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Abstract

As an aid for musical analysis, in computational musicology mathematical and
informatics tools have been developed to characterise quantitatively some aspects
of musical compositions. A musical composition can be attributed by ear a certain
amount of memory. These results are associated with repetitions and similarities of
the patterns in musical scores. To higher variations, a lower amount of memory is
perceived. However, the musical memory of a score has never been quantitatively
defined. Here we aim to give such a measure following an approach similar to
that used in physics to quantify the memory (non-Markovianity) of open quantum
systems. We apply this measure to some existing musical compositions, showing
that the results obtained via this quantifier agree with what one expects by ear.
The musical non-Markovianity quantifier can thus be used as a new tool that can
aid quantitative musical analysis. It can also lead to future quantum computing
controllers to manipulate structures in the framework of generative music.
Keywords: memory, non-Markovianity, open quantum systems, computational
musicology, pattern repetition.

1 Introduction

1.1 Mathematics and Music

Cross-fertilisation between music and science, in particular mathematics and computer science,
nowadays constitutes a flourishing research field, involving both the creation of new musical pieces
and the analysis of existing ones. The main focus of this research is to develop a physics-inspired
strategy to investigate the amount of thematic memory in a musical piece. This article presents a
heuristic approach to measure musical memory.

Applications of mathematics and computer science are particularly relevant for computational mu-
sicology. In fact, in computational musicology, methods to quantify specific aspects of musical
compositions mathematically have been developed (Jedrzejewski, 2019a; Montiel & Peck, 2018;
Bel & Vecchione, 1993). They are used both as an aid for musical analysis, and to investigate some
aspects of samples of compositions (Mazzola, 2007; Mazzola, 2002). In particular, these methods
have been applied to analyse: musical theory in a geometrical way (M. et al., 2006); gesture in music
(Mazzola & Andreatta, 2007; Mannone, 2018a; Arias, 2018); counterpoint; interpretation; harmony
(Mazzola, 2002); common patterns in sound amplitude (Mendes et al., 2011); chord-sequences
and voice-leading in the light of topology (Tymoczko, 2006; Tymoczko, 2020); and symmetries
between chords in lattices called Tonnetze (Amiot, 2017; Jedrzejewski, 2019b). Formal tools also
include using the abstract power of category theory in order to formalise musical structures, including



relationships within music theory and between music theory and musical performance (Popoff et al.,
2019; Mannone, 2018b; Mazzola, 2002; Mannone, 2018a; Arias, 2018; Jedrzejewski, 2019a).

Techniques of information retrieval, often applied to music, can be connected with quantum mechanics
(Piwowarski et al., 2010; Di Buccio et al., 2009), but, to the best of our knowledge, quantum mechanics
has not yet been applied to music information retrieval. Thus, we propose a quantum-based approach
to musical information retrieval.

1.2 Quantum Mechanics and Music

Among mathematical tools, the formalism of quantum mechanics is the object of growing attention
(Miranda, 2021; beim Graben & Blutner, 2020; beim Graben & Mannone, 2020; Rocchesso &
Mannone, 2020; Fugiel, 2022; Putz & Svozil, 2017).

In particular, the physicists beim Graben and Blutner gave mathematical substance to conceptual
analogies between musical tonal rules and force fields, exploiting the definitions of gauge fields
(beim Graben & Blutner, 2020). As a development of this research, it has been proven that pitch
quantisation (musical notes as sets of quantised pitches, connected through chords) emerges from
symmetry-breaking and from the eigenvalues of the Schödinger equation (beim Graben & Mannone,
2020).

The pioneering contribution of Gabor (1947) exploits the quantum paradigm to analyse sounds and
to formalise the idea of quantum of sound. Starting from Gabor’s hints, and considering the use of
the human voice as a probe to investigate the world of sound,1 the quantum mechanical formalism
has been used to formalise the basics of the human voice (phonation, turbulence, and myoelasticity),
allowing some first experiments in sound analysis and synthesis (Rocchesso & Mannone, 2020).

The interplay between musical and extra-musical ideas has been contextualized within quantum
semantics (Dalla Chiara et al., 2015). Also, the Dirac notation used in quantum mechanics, jointly
with the basic ideas of destructive quantum measure, has been applied to analyse visual structures
and translate them into musical structures (Mannone et al., 2020).

The quantum paradigm has been exploited for interactive music-production interfaces, such as Qubits
(Kulpa et al., 2020). In this framework, users can select sound trajectories between maximum
noise/least pitch and maximum pitch/least noise (Kulpa et al., 2020). Noticeably, quantum computing
has been applied to music (Miranda, 2021). There have been other proposals of sonifications based
on quantum mechanics ideas and techniques (Kontogeorgakopoulos & Bugarth, 2014), including
sonification of dynamic behaviours (Cádiz & Ramos, 2014). Time series appear to be relevant in the
framework of generative music (Dean, 2017), and they might be related to the idea of memory (Toop,
2004).

Some of the applications mentioned concern mathematical techniques for quantum systems that
demonstrate effectiveness in analysing music (Dalla Chiara et al., 2015; Mannone et al., 2020;
Kontogeorgakopoulos & Bugarth, 2014; Dean, 2017). Some other studies involve the direct applica-
tion of the basics of quantum systems (Gabor, 1947; Rocchesso & Mannone, 2020) and quantum
computing in sound and music (Miranda, 2021; Cádiz & Ramos, 2014; beim Graben & Blutner,
2020; beim Graben & Mannone, 2020; Kulpa et al., 2020). While there is a flourishing of studies on
quantum computing applied to music, here we focus in particular on methods and concepts from open
quantum systems. Quantum computing is a branch of computer science, while quantum mechanics is
a branch of physics. They both start from the quantum definition of states and measurements.

1.3 Memory, Music and Quantum Mechanics

In this article, we develop an application of quantum mechanics to investigate the amount of “mem-
ory” in musical scores. Memory, understood here as the repetition and recognisability of motivic,
rhythmic and harmonic elements, is a key element in music composition, analysis, and even intuitive
understanding for non-expert musical listeners. Because memory is strictly related to degrees of
recognisability and techniques of musical development, it constitutes an essential element of genera-
tive music. We may, in fact, envisage memory-based codes being used to generate music according
to the degree of similarity to some model that we would like to attain. We may want to have the basic

1 Vocal imitations capture essential features of sounds; see (Lemaitre & Rocchesso, 2014).
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idea of a generative musical piece to be “recognisable”. In this framework, the following approach
might help.

Much music characteristically presents repetitions of segments.2 The idea of “repetition” in music
is complex. There can be repetitions of entire segments, variations, and thematic cells appearing in
different parts of an orchestral score. For the sake of simplicity, we focus here on short and simple
fragments, distinguishing between maximal memory in the case of two identical segments, and
minimal memory when no similarity between the two segments can be envisaged.

The amount of repetition can in some way be considered to be related to the degree of memory
of the composition (Cherlin, 1998; Mazzola et al., 2011). There are algorithms to find the most
repeated segments (Meredith et al., 2001; Meredith et al., 2002; Utgoff & Kirlin, 2006), to compose
music (Bresson, 2006; Collins et al., 2011; Collins, 2011), to orchestrate (Mannone, 2013), and
to improvise in real time (Assayag et al., 2006; Cont et al., 2010; Noll et al., 2006). Repetition in
music is important, and algorithms have also been used, either to generate music or to detect repeated
segments, in order to characterise segments as something definite (Schenker, 1954; Temperley, 2001;
Lerdahl & Jackendoff, 1983; Sciarrino, 1998; Reti, 1978; Kramer, 1992). In particular, Markov chains
and hidden Markov chains (Rabiner & Juang, 1986; Flexer et al., 2005; Amiot et al., 2006) have been
used in the techniques of score following (Assayag et al., 2006; Cont et al., 2010), analysing chord
sequences in jazz improvisation (Franz, 1998), studying spectral similarity (Flexer et al., 2005), and
composing Markovian stochastic music (Xenakis, 1963).

Memory is also an important concept in the physics of open systems, that is systems embedded in an
environment. It is associated with the concept of non-Markovianity in the dynamics of the system,
as distinct from the concept of Markovianity that characterises a memoryless evolution (Breuer
& Petruccione, 2002). Therefore, we shall use the term non-Markovian music to characterise the
presence of memory in a musical score. While the quantification of the degree of memory in open
systems is still an open problem, various criteria have recently been developed in order to quantify it
(Andersson et al., 2010; Breuer et al., 2009; Rivas et al., 2010). Each criterion is based on a particular
computational aspect. In general, criteria aim to quantify the passage from a Markovian dynamics
to a non-Markovian dynamics. There are non-Markovian dynamics when correlations between the
system and the environment occur as a product of a joint evolution (Lo Gullo et al., 2014). The
relationships between various criteria have recently started to be studied in detail (Mannone et al.,
2013).

1.4 Our Contribution

Here we shall address the question: is it possible to quantify the degree of memory in existing
compositions? In fact, while algorithms to find a theme in a piece of music have been developed,
quantification of the degree of memory in a composition, to the best of our knowledge, has never
been addressed.

The aim of this paper is to develop a method to define and measure the Musical non-Markovianity
degree of musical compositions, adopting concepts and mathematical techniques used in quantum
physics. Among the various criteria available to measure the degree of memory, the one that will
be applied to the case of musical composition is that which utilises the distance between matrices
(Breuer et al., 2009).

In order to define quantitatively the degree of memory in a musical composition, we follow the way
in which the degree of memory is utilised, in the context of the theory of open quantum systems
(Cover & Thomas, 2006; Preskill, 2004; Breuer & Petruccione, 2002). It is, however, important to
note that the conception of memory, and thus the definition of non-Markovianity, conceived expressly
for music, must be different to the definition considered in the quantum case, where comparisons are
made between different states at the same instant. In a musical composition, we compare segments of
finite duration starting at different time instants of the same musical piece. The common aspect is the
idea of memory as conservation of characteristics that make a pattern distinguishable from another,
like distinguishing one state from another.

2 We assume here notated Western music. However, our technique can be applied to every musical genre,
provided that a MIDI rendition can be obtained.
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As an application, the degree of memory of three different compositions will be quantified – these
already by ear appear to present a very different degree of memory – in order to see if the results
obtained align with listeners’ expectations.

The structure of this article is as follows. In Section 2.1 we briefly discuss the use of entropy and
then, in Section 2.3, we introduce non-Markovianity criteria used in quantum physics, giving more
details about which ones are conceptually applicable to musical cases, and in which way. In Section
3 we give technical information about the musical matrices defined and the algorithm developed to
find them, and then we apply our method to fictitious examples. In Section 4, we define musical non-
Markovianity. In Section 5, we apply the same method to existing compositions, giving numerical
results. In Section 6 we discuss possible automation of the proposed method. In Section 7 we give
some conclusions. In the Appendix there is an example of distribution matrices.

2 Mathematical Tools

2.1 Relative Entropy as a Measure of Memory

In music, the repetition of some meaningful unit is an important feature. The unit “theme” can be
taken to be such a meaningful unit. It usually appears at the beginning of the composition and has
characteristics that are repeated during the piece. When a clear “theme” cannot be recognised, it
is still possible to individuate an initial musical idea. The repetitions of recognisable units can be
taken as an indication of the “memory” embedded in the composition. To be able to quantify some
regularity in the score, one must refer to measurable parameters relative to the score, such as pitches,
durations and intensities.

Another way to analyse the regularity of the structure in a musical composition is to make a measure
of the randomness. These two aspects – the amount of repetitions of some musical pattern, and the
degree of randomness in the entire composition – can be useful to characterise the musical score.

To quantify the amount of randomness, entropy can be used (Cover & Thomas, 2006). Xenakis
computed probability transitions and measures of entropy in musical segments, evaluating the amount
of randomness in a piece (Di Scipio, 1998; Xenakis, 1963). Xenakis also made a distinction between
conditions of growing entropy characterising perturbative states, and stationary states as equilibrium
points (Di Scipio, 1998). The entropy H(X) of a string of N elements of a random variable X, with
the measurable parameter x, is defined as:

HPI
(X) = −

N∑
i=1

p(xi) log2 p(xi), (1)

where p(x) is the probability that the quantity X has the value xi for the ith element of the string,
H(X) upper limit being Hmax = log2 N , and its lower limit zero. The magnitude of H(X) is taken
to quantify the amount of randomness in the musical segment.

Entropy has in fact been used to quantify the amount of randomness of sequences of pitches in a
musical score (Xenakis, 1963). In that case, given a string of N notes as elements, the measurable
parameter x has been identified with values that are related to the value of the pitch.

To evaluate memory, which is a measure of the repetition of segments in a chosen musical score, we
need to take into account the order of pitches. Relative entropy, which takes into account pairwise
comparisons between the elements of two strings, is useful for this purpose. One can argue that two
musical compositions with similar values of relative entropy may have a similar structure. Relative
entropy is obtained by comparing the probability of two different distributions of identical objects. If
we measure the amount of randomness of a string through a probability distribution, we can then
compare two strings through two probability distributions. Thus, if there are two strings, their relative
entropy can be computed through the Kullback-Leibler divergence D(X) (Cover & Thomas, 2006,
p. 19; MacKay, 2003), defined as:

D(X) = −
N∑
i=1

p(xi) log2
p(xi)

q(xi)
, (2)
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where p(x) is the probability that the quantity X has the value xi for the ith element of the first string,
and where q(x) is the corresponding probability for the second string.

The Kullback-Leibler divergence in its symmetrised form has been used to evaluate the degree of
similarity within a musical composition (Cont et al., 2010), giving a measure of the most repeated
musical segments.

When applied to musical strings of pitches, the use of D(x) is beset with certain difficulties. First,
D(X) is not commutative; second, it is necessary that the two segments contain the same number
of symbols. The non-commutativity implies that probabilities do not appear in a symmetric way
depending on which order is utilised: p|q is different from q|p. For example, the comparison between
a musical segment containing the notes C and D and a segment also containing E that uses relative
entropy, requires neglecting the E in the second segment. If we eventually consider some rests in
place of the missing notes in the shorter string, we obtain a theme that is different from the original
one, because rests become a characterising aspect of the theme. We notice that, in this approach,
we consider one parameter only; however, musical memory is not only defined by pitch, but also
by combinations of pitch, rhythm, loudness, etc. After a short overview of a recent application of
entropy to musical analysis (Section 2.2), we will present a different formal tool that will allow us to
investigate memory in musical pieces (Section 2.3).

2.2 Entropy and Musical Analysis

Recently, the idea of musical entropy has been exploited to quantify the amount of rhythmic activity,
in a study of the definition of musical entropy based on Fourier coefficients (Amiot, 2020). The
application of Fourier coefficients to sound analysis is well known. In the framework of mathematical
music theory, some authors analysed Fourier coefficients to evaluate distributions of rhythms or
pitches, in order to compare quantitatively rhythmic patterns for one, and pitch distributions – scales,
motives – for the other (Amiot, 2016). The drawback of this approach is that each parameter,
be it rhythm or pitch, is analysed independently, yet we need to consider multiple parameters
simultaneously. Recently, the Fourier coefficients for mathematical music theory have been combined
with entropy. The entropy of Fourier-coefficient distribution has been theoretically defined (Amiot,
2020) and applied to analyse the rhythm of a few bars of an orchestral piece (Favali, 2020). Entropy
is maximum when the rhythm is more homogeneous. This happens with silence. When activity (the
sound itself) starts, entropy diminishes. It starts rising again when the rhythm becomes so complex
that the perception is once again of homogeneity. Thus, the maximum entropy corresponds to two
opposed situations. We can imagine a range from minimal entropy in the case of silence to maximal
entropy in the case of rhythmic chaos. This also happens in the visual arts.3 However, beyond
“perceivable” chaos, we have the limit of white noise, and of an extreme rhythmic tessellation, where
no distinction between beats is possible. The interpretation of entropy is not trivial, because the same
value can correspond to very different musical situations – complete silence versus uninterrupted
superposed rhythms – and thus it does not appear to be a good candidate to distinguish musical
passages and to assess their degree of musical memory.

In addition, musical memory does not depend upon a single parameter, such as the rhythm just
considered. To characterise the score content completely, we need a more complete analysis, one that
requires the use of several parameters, such as intensities and durations. In fact, musical memory is
more complex than the specific amount of activity occurring in a single parameter. For this reason,
and because of the aforementioned ambiguity in musical entropy and the restrictions imposed by the
use of relative entropy, we will use other mathematical tools. We will be inspired by techniques to
measure memory for open quantum systems, the non-Markovianity criteria, and adapting them to
music. We will derive a non-Markovianity degree, a unique quantifier whose result is evident and not
subject to interpretation as is entropy. As we will see, in our analysis the amount of memory related
to the chosen parameters is evident.

2.3 Non-Markovianity Criteria

This section aims to give a quantitative characterisation of non-Markovianity in music. We build a
measure following a similar path as that used in the theory of open quantum systems (OQS).

3 Relationships between values of entropy and organisation and regularity in visual artworks are discussed in
(Burns, 2015).
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Account must nevertheless be taken that memory in music can be different from that which is used in
the physics of OQS. In the latter, loss of memory occurs when two states (represented by matrices),
initially distinct, become progressively indistinguishable; i.e., the lower the distinguishability, the
lower the memory. In a musical score, by contrast, memory is associated with repetitions of patterns.
To a higher number of repetitions corresponds a higher amount of memory, i.e., the lower the
distinguishability among segments, the higher the memory.

Quantification of non-Markovianity in the theory of OQS have been addressed recently by (Breuer &
Petruccione, 2002), introducing different criteria with appropriated quantifiers. A given quantifier
may be simpler in application and understanding than another. Among the quantifiers used in OQS,
one (Breuer et al., 2009) quantifies memory by considering the variation of the distances between two
quantum states with time. The increase or decrease of this quantifier is associated with persistence or
loss of memory.

Other criteria study the density matrix that describes the state, the master equation (Breuer &
Petruccione, 2002). One criterion looks at the separability of the map: when it is separable, the
dynamics are Markovian; otherwise, the dynamics are non-Markovian (Rivas et al., 2010). One other
criterion looks at the signs of coefficients in the master equation (Andersson et al., 2010). In general,
the different criteria of non-Markovianity do not always agree. For example, to describe the presence
of memory revivals in different time regions (Chruscinski & Kossakowski, 2010), the comparison
between them is an open problem (Mannone et al., 2013).

We choose to quantify the presence of memory in musical scores using a criterion that makes direct
use of matrices. This is because, for a musical score, we do not have anything corresponding to a
map or a master equation, yet it is instead possible to represent a musical segment as a matrix. The
distance between two states is given by the trace distance of the matrices ρ1 and ρ2 representing the
states (Breuer & Petruccione, 2002, p. 105; Breuer et al., 2009):

D(ρ1, ρ2) =
1

2
tr|ρ1 − ρ2|, (3)

where, if A is a Hermitian matrix, |A| =
√
A†A.4 The rate of variation of the distance D is defined as

σ = σ(ρ1, ρ2) =
d

dt
D(ρ1, ρ2). (4)

When σ > 0, the distance is increasing, and thus the distinguishability between states is preserved.
When σ ≤ 0, the distance is decreasing, and the memory is progressively lost. This is a crucial point,
and it is the core of the considered non-Markovianity criterion from physics. If, at time 0, we have
two different states, and if their difference increases over time, then we say that we keep the memory
of their distinction.5 However, if we start with two different states and, across time evolution, they
evolve to become similar, and even indistinguishable, their difference is lost: that is, the memory of
their separation is lost. This is why we state σ > 0 → memory preserved, σ ≤ 0 → memory lost.

3 Musical Matrices

In the physics of OQS, matrices ρ1, ρ2 represent quantum states; here, matrices must be related to
the content of a musical composition. To adopt similar methods in musical compositions to quantify
the amount of frequency, we shall build matrices starting from a musical score. In order to construct
these matrices, we shall convert into numbers the symbolic information contained in a musical score.

A musical composition is divisible into segments, each segment corresponding with a set of numerical
parameters relative to frequencies, intensities, times of start and durations. Matrices can be constructed
in terms of these numerical values. The matrices we use represent the distribution relative to every
note in each segment around the mean value of these parameters.

4 Hermitian matrices are symmetric with respect to the exchange of indices of their elements. Our matrices
are special cases of Hermitian matrices, keeping their symmetry, and imaginary parts equal to zero. Similarly,
real numbers can be seen as complex numbers whose imaginary part is zero.

5 In our musical framework, the “state at time zero” would be the initial musical segment (of finite time
duration).
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For the pitch of notes, we use differences in semitones with respect to middle C (0 = C4, −1 = B3,
1 = C♯4). For intensities, we use dimensionless numbers to indicate relative intensity indications in
musical scores. In particular, we choose 90 for ffff, 80 for fff, 70 for ff, 60 for f, 50 for mf, 40 for mp,
30 for p, and so on. For time, we have used dimensionless units: that is, the ratio between the duration
of the examined note and the metronome mark.6 In particular, we have taken 1 for semiquavers,
2 for quavers, and so on. The duration of a rest will be counted as the time before the start of the
following note. The couples of parameters that we have chosen to characterise our matrices are:
duration-intensity, frequency-start, start-intensity, frequency-duration, and frequency-intensity.

For each musical segment, we have first obtained the mean value relative to each parameter. Then, we
have evaluated the distance (normalised between 0 and 1) of each parameter of a note in the segment
with respect to its mean values. The range of distances from the first parameter and the range of
distance from the second has been divided into equal parts.

Having established a segment, let us consider a note and a couple of its parameters, for example,
duration and intensity. We evaluate the difference between the value of each parameter of the note
and the corresponding mean value in the segment. We then discretise the bidimensional domain of
values, defining a reticular step. Given a note and its parameters, we see if the normalised difference
is contained in each element of the lattice. The number of elements in the lattice represents the
musical matrix.

For each couple of parameters, one constructs a matrix relative to a numerical segment. It is clear
that it is possible to divide the distance range 0-1 into several parts. In our analysis, we shall limit
ourselves to matrices with four rows and four columns. An example of this procedure in the case
of the frequency-start matrix, and corresponding to a given musical segment, is described in the
Appendix. This procedure can be applied through the use of an algorithm that we have developed.

In the Appendix, in order to provide a worked example, we chose a minimal segment, irrespective of
its time-division, to build a 4 x 4 matrix. The use of 4 x 4 matrices is a choice. We have proved that
with 4 x 4 matrices we already acquire information on musical memory. The structure of matrices
depends upon the parameters we choose to define the system, the space characteristics, and the
degree of chosen fine-graining. In fact, we built up 4 x 4 matrices to analyse the memory of pairs of
variables. A four-part matrix is precise enough to capture quantitative information corresponding
to our qualitative assessments. The entire method could be made more precise, for example, with
9x9 matrices, using multiple parameters and allowing a fine-grained analysis of musical passages.
However, the theoretical discussion and motivation would remain the same.

4 Musical Non-Markovianity

In the following, we shall analyse the structure of a generic musical composition that will be used as
the basis to define musical memory.

Most musical compositions are divisible into sections. The structure of the entire musical piece is
determined by the structure of sections. The most common form for a single movement in classical
compositions is arguably A-B-A’. Let us consider a simplified structure A-B. Both sections may
contain several segments; let us suppose A1, A2, A3 for Section A, and B1, B2, B3 for Section B.
The natural succession in time of the segments in a score is thus the following:

A1 A2 A3 B1 B2 B3 (5)

In order to define a non-Markovianity criterion, we reorder these segments in time to compare them.
Sections A and B are ordered as:

A B
A B
A B

(6)

6 The metronome mark is an indication at the beginning of a musical score indicating the correspondence
between the predominant rhythmic value of the piece (for example, a crotchet or a quaver) and the number of
beats per minute (bpm).
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t
yA1 B1

A2 B2

A3 B3

(7)

with time flowing downward.

To each segment, we assign a set of two-dimensional matrices, each matrix representing the distribu-
tion of a couple of variables for each note (for example, frequency and duration). The exact procedure
to build these matrices has been outlined in Section 3. Here we proceed to apply the criterion of
non-Markovianity described in Section 2.3 to the above canonical structure, constructing a matrix
that corresponds to a musical segment.

To the musical composition above correspond the set of matrices:

t
yρA1 ρB1
ρA2 ρB2
ρA3 ρB3

(8)

The trace distance defined in Eq. 3 between simultaneous segments ρAi , ρBi is Di = Di(ρ
A
i , ρ

B
i ). It

measures the distance between the segments ρAi and ρBi . The variation rate σ in the case of music can
be defined as ∆D

∆t (we are considering finite time intervals), where ∆Di+1 = Di+1(ρ
A
i+1, ρ

B
i+1)−

Di(ρ
A
i , ρ

B
i ) and ∆ti+1 = tstart, i+1 − tstart, i.

Because of the normalisation of the number of notes, all time-intervals ∆t become equal, and we
simply define the rates as σi = Di+1 −Di. We consider only positive values, which represent the
case of increasing distance.

Contrary to the case of physical systems, where, if the distance decreases memory is lost, in a musical
composition memory is preserved if the distance is constant or decreases. In fact, the increasing
distance mentioned above corresponds to the increasing σ of the non-Markovianity criterion. Musical
non-Markovianity is defined as 1− σ and thus, if σ increases, 1− σ decreases. In physics, the lower
the distinguishability, the lower the memory; while in music, the lower the distinguishability, the
higher the memory. In fact, to successive equal musical segments, which means a maximum musical
memory, there correspond equal matrices.

Now we define a quantitative measure of the amount of memory, or of non-Markovianity, in a musical
composition. For open quantum systems, the degree Nmax of non-Markovianity is defined as an
integration of σ(ρ1, ρ2) in Eq. (4) (Breuer et al., 2009), over time. The contribution to the integral is
taken only over regions with σ(ρ1, ρ2) > 0, and maximisation is then performed over all the possible
initial states. In the musical case, however, we want to define the memory degree for each individual
musical piece and thus for a single initial state, not for all possible initial states.

We can partially preserve the idea of integration used in physics. Since in a generic musical
composition there is not a statistical structure, we can utilise a discretised version of Nmax, with
the sum of positive rates σi instead of the integral, where no maximisation is performed: we call it
n =

∑
i(if σi>0) σi.7 Then, we renormalise this quantity in order to define an N comprised between

0 and 1: N =
∑

i(if σi>0) σi

1+
∑

i(if σi>0) σi
, with the form n

1+n (Rivas et al., 2010). Thus, 0 ≤ N ≤ 1.

Finally, we define our quantifier of musical non-Markovianity as M = 1−N , to characterise the
amount of memory in musical compositions. The quantifier M is equal to 1 when the thematic
memory is at the maximum, i.e., when in a musical composition there are only repetitions of the same
segment. To lower M, there corresponds a lower amount of musical memory. In a nutshell, musical
non-Markovianity is defined as 1 − σ, where σ is the quantifier defined for the non-Markovianity
criterion considered. Thus, if σ increases, 1− σ decreases. This is why we are considering positive
values of σ.

The quantifier M is then:

7 Regarding the normalisation on the number of notes, we are considering the number of notes as the pulses,
the musical events. While building up a new model, it is necessary to make some choices, which can be refined
in further research.
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M = 1−
∑

i (if σi>0) σi

1 +
∑

i (if σi>0) σi
=

1

1 +
∑

i (if σi>0) σi
. (9)

M as defined in Eq. 9 does not differentiate between cases with an identical sum of positive rates∑
i, σi>0 σi, because it does not give any information about the total number of rates, positive,

negative and null. For example, let us consider a score with ten total rates, with only two positive
ones, and with sum

∑
i, σi>0 σ

∗
i : the positive contribution has the proportion of 2 over 10. (With σ∗,

we indicate a specific evaluation of σ.) By contrast, let us consider another composition, with only
three total rates, with two positive ones, and with identical sum

∑
i, σi>0 σ

∗
i : the positive contribution

in this case is 2 over 3. The information given by Eq. 9 is the same for the two compositions, and
does not take into account the different proportions (2/10 versus 2/3).

This situation can be easily solved by introducing a correction factor, r = n+

nT
, defined as the ratio

between the number of positive rates n+ and the number of total rates nT . So we define a new
quantifier:

MC =
1

1 + r
∑

i (if σi>0) σi
. (10)

MC appears to be a better measure of the memory in musical structures than M.

Now we give two simple musical examples. The first shows two identical bars (Fig. 1), and the
second presents two very different bars (Fig. 2). The expectation is for the maximum value of
memory for the first example, and for a very low value for the second one.
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Figure 1: In the case of two identical bars, the amount of memory is maximal.
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Figure 2: The first bar is a quasi-random sequence of pitches and durations, while the second is totally
different: in this case the memory for the parameters frequency-start is 0.3, a very low value, since
0 ≤ MC ≤ 1. Neglecting onsets, we would obtain a similar degree of memory for a segment with
the same pitches in a different order. However, to the ear of a listener, a rather chaotic segment as that
in the first bar might lead to a very similar perception irrespectively of the order of pitches.

Let us now consider the parameters frequency and start, and let us evaluate the amount of memory
using MC . In Fig. 1, with its two identical bars, the trace distance (defined in Eq. 3) between the
matrices for the first and second bars is zero, and then the amount of memory is immediately maximal,
i.e., MC = 1. However, in Fig. 2, we have two completely uncorrelated bars: the first bar contains
quasi-random pitches and duration-start, while the second bar has only a semibreve. In this case,
the amount of memory MC is equal to 0.3, a low value since 0 ≤ MC ≤ 1. We have utilised MC ,
although in these two examples there are only two bars, and there is only one rate σ. Thus, in this
particular case, the results given by M and MC are equivalent.

5 Application of a Non-Markovianity Criterion

We now apply the methods of the previous sections, and the technique described in Section 3, to
some existing compositions.
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The chosen compositions are the vocal part of the aria Dolente Immagine that is the eighth piece from
Quindici Composizioni da Camera by Vincenzo Bellini (Bellini, 1935); the first piece from the oboe
suite Solo by Bruno Maderna (Maderna, 1971); and the third of Metamorphosis I–V by Philip Glass
(Glass, 1988). They are therefore examples of an Italian romantic vocal composition, an avant-garde
Italian composition, and a contemporary minimalist work, respectively. These compositions have
been chosen because they appear to have, on first hearing, rather different degrees of musical memory.

The compositions will be analysed using both the musical non-Markovianity degree M given in Eq.
9, and MC of Eq. 10. We will see that the use of MC allows for a better characterisation of memory
in some of the treated cases.

An important step in the analysis is the division of the structure into segments. We will construct tridi-
mensional graphs to represent the structure of pitches, onsets and intensities of musical compositions.
The use of tridimensional graphs to study characteristics of sounds has been proposed by Xenakis
(1963), and their use to study graphically the orchestration of musical scores has been proposed by
Betta (Mannone, 2011). Here, we will briefly examine the structure of the chosen compositions in
order to find the optimal subdivision into segments.

Bellini. The score has a structure of type A-B-A’, and can be divided into seven periods: Section A has
three periods, Section B only one, and Section A’ has three. In this research, we divide musical pieces
into segments by hand. This step can, however, be automated. The motivation for the subdivision
into three sections is due to the tonality change in Period four, and the reprise of the theme and its
tonality in Period five. The subdivision into segments is, as discussed, due to reasons of the musical
analysis of a classic model. There are some identical parts between Sections A and A’, and this
fact induces us to expect a high degree of memory. A matrix is then associated (for each couple of
parameters, as discussed in Section 3), with each segment. In the case of the Bellini piece, a segment
naturally corresponds to a period. Fig. 3 graphically represents pitches, onsets, and intensities of the
score, showing some repeated patterns. The intensity in the score is constant, and thus the complete
development of the composition can be represented in the time-frequency plane (Fig. 4).
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Figure 3: The tridimensional graph represents the vocal part of Dolente Immagine by Bellini. The
image is flat since the intensity is constant. There are seven periods, and the analysed segments
correspond to periods. Periods with identical segments are shown in the same colour. The mean value
of MC is 0.9.

Maderna. It is evident from the score of the first piece of the oboe suite Solo, and from looking at
the tridimensional representations of the score in Fig. 5, that the structure is very different from
Bellini’s composition. In fact, the quantity of repetitions is clearly lower, there are no thematic or
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Figure 4: The projection of the graph of Fig. 3 in the time-frequency plane. The intensity in the score
is constantly equal to piano (30 in our scale), and then the plane time-frequency contains the entire
vocal score. The presence of repeated patterns is evident.

other relevant patterns, and there are only a few thematic fragments. So in this case one expects
that, with respect to the Bellini composition, there is a lower degree of memory. Since there are few
thematic or tonal motivations here, unlike Bellini’s work, it is impossible in this case to talk about
periods, but only of segments separated by the respiri e legature (breaths and slurs), the most natural
criterion in this case. We have on this basis divided the score into eleven segments.

20
30

40
50

60intensity 0

50

100

time
10

20diff. frequencies

Figure 5: Tridimensional representation of the first piece of the suite Solo by Bruno Maderna. The
limited quantity of repeated patterns is evident. Each colour identifies a different segment. The mean
value of MC is 0.6.

di
ff

er
en

ce
 o

f 
fr

eq
ue

nc
ie

s

graph_maderna_frequency_time_1_bis

time
0 50 100

time

10

20
diff. frequencies

Figure 6: Projection in the time-frequency plane of the graph of Fig. 5.

Glass. The piano composition Metamorphosis III is an example of the minimalist style, where there
are repetitions with a very small number of pattern changes and variations. The expected degree of
memory is, therefore, higher with respect to Maderna’s case. We have chosen this example because
it is one where it is possible to verify the usefulness of the corrective factor r (Eq. 10). Due to its
regularity, the composition has been divided into twenty-two segments, each segment containing
four bars (bar 1 of the refrain has not been considered). The two-dimensional graph of Fig. 8 clearly
shows the repeated patterns; the tridimensional graph of Fig. 7 also shows the variations of intensity.
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Figure 7: Tridimensional representation of Metamorphosis III by Philip Glass. In this graph, we
chose the value 1 for the quaver (in the other pieces, 2 was chosen for the quaver). The calculations
of the degree of non-Markovianity are unaffected by these variations, because the important elements
are the distributions towards the mean values of pitches and onsets. The mean value of MC is 0.8.
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Figure 8: Projection into the time-frequency plane of the graph of Fig. 7.

In the following, we obtain the musical matrices corresponding to the above three musical scores and
apply them to analyse the respective memory degree M and MC , as defined in Eq. 9 and Eq. 10.
The results are given in Table 1.

The values of M do not appear to correspond with the empirical expectations for all pieces, although
it corresponds for the first two pieces. The values of MC appear to correspond: in fact, Bellini’s
and Glass’s compositions have an average degree of memory higher than Maderna’s, and that of
Bellini’s composition is higher than Glass’s (using the corrective factor). In particular, the mean
values of MC over the couples of parameters considered are 0.9 for Bellini, 0.6 for Maderna, and
0.8 for Glass. Therefore, we have seen that the degree of memory MC is better than M, since it
quantifies correctly the memory of Glass’s score. In some cases, the values of M and MC are not
significantly different, but in others, and depending on the length of the composition, the correction
appears decisive. Therefore, it seems that the method can be extended to analyse the degree of
memory of musical compositions using a larger set of data.

To apply these methods to analyse musical scores it would be advantageous to automate it in order to
obtain the reduction into numbers of the musical parameters contained in the score and the subdivision
into segments (Mannone, 2013).
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frequency - start
B M G

M 0.97 0.73 0.55
MC 0.99 0.77 0.97

duration - intensity
B M G

M 0.75 0.40 0.38
MC 0.82 0.53 0.78

start - intensity
B M G

M 0.86 0.54 0.51
MC 0.81 0.59 0.86

frequency - duration
B M G

M 0.75 0.56 0.55
MC 0.82 0.62 0.79

frequency - intensity
B M G

M 0.85 0.55 0.40
MC 0.94 0.67 0.57

Table 1: Values of the musical non-Markovianity quantifiers M and MC calculated for musical
matrices of the examples by Bellini (B), Maderna (M) and Glass (G).

6 Automation

We can wonder if, and to what extent, the process discussed above can be automated. At present,
some aspects are automatic – the computation of matrices – and some are not – the division of musical
scores into segments and the matrices’ comparison. The first issue can be solved with the help of
time series-based techniques.8 The second issue can be addressed with the help of a categorical
approach to matrices.9 Each matrix is considered as a “point” and, thus, matrix comparisons can
be easily compared with suitable morphisms. In our research, we might define functors to compare
the thematic elements of a piece with those of another piece; and the matrix mappings for a piece
with those for the other piece. Thus, the comparison of the degree of memory of different musical
compositions can correspond to a functorial structure, which retains all information from single
segments (and their associated matrices) to matrix comparisons. The degree of musical memory can
thus be seen as an index to be associated with such a functorial process. This can be the object of
further computational research, leading toward the automation of the main steps of the proposed
method.

7 Discussions and Conclusions

We have proposed a method to measure the amount of memory in a musical composition. To quantify
musical memory we have constructed quantifiers following a non-Markovianity quantifier used in
the theory of open quantum systems (Breuer et al., 2009). For such a purpose, we have transformed
musical scores into numerical matrices relative to couples of parameters.

In order to obtain our 4 x 4 matrices, we have firstly divided each musical score into segments. We
have then chosen a couple of parameters, e.g., pitch and time of start (onset) and have evaluated the
mean values of all values of pitch and of all values of onset in the segment. We have then evaluated
the distance (normalised between 0 and 1) of the parameters (a value of pitch and a value of onset)
associated with each note in the examined segment with respect to the corresponding mean value
(mean pitch and mean onset). Counting the number of notes with a pitch value in a given horizontal
segment of the matrix with respect to the mean value of pitches, and counting an onset value in a
given vertical segment of the matrix with respect to the mean value of onsets, we have constructed
the matrix pitch-onset for the segment considered. We have followed the same procedure for all
segments, and for the various couples of parameters.

We have then evaluated the trace distance between matrices relative to the same couple of parameters.
The rate of variation of the trace distance between matrices gives information about the memory in
open quantum systems, where matrices represent different quantum states. Since we have normalised
musical matrices on the number of notes of each segment, the evaluation of the rate σ is simply the

8 For a musical application of times series to music and detailed references, see Mannone (2013).
9 Category theory is a branch of mathematics, embodied in a diagrammatic framework, that easily allows the

description of transformations of transformations, and the creation of nested structures. A category is constituted
by objects (visually represented as points), and morphisms between them (arrows), whose composition is
associative and has the identity element. A category can be described as an object in itself; mappings between
categories are functors.
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evaluation of differences between matrices corresponding to pairs of parameters for each musical
segment. More details are provided in the Appendix. Positive values of σ represent increasing
distances.

The fundamental difference between measuring memory in physics and measuring it in music is that
in physics the higher the distance between initial equal states, the higher the memory; whereas in
music the higher the distance, the lower the musical similarity between segments and thus the lower
the musical memory.

To check the consistency of our quantifier, MC , that is, the measured amount of memory, we have
applied this method to two simple cases: two equal bars in the first case (Fig 1), two very different
bars in the second (Fig. 2). We have found that, in these simple cases, there is an agreement between
the information given by the quantifier and the memory as intuited by listening.

We have applied our method to evaluate the amount of memory of three compositions, that, by ear,
show a different quantity of memory. These compositions are the vocal part of the aria Dolente
Immagine by Bellini (Bellini, 1935), the first piece from the oboe suite Solo by Maderna (Maderna,
1971), and Metamorphosis III by Glass (Glass, 1988). Qualitatively, the amount of memory of the
works by Bellini (one with the common structure A-B-A’) and Glass (an example of minimalism) is
higher than that of Maderna’s score (an example of the avant-garde). The values obtained of MC

correspond to these expectations. That is, MC has a higher value in scores to which one, by ear,
attributes a larger amount of memory.

The proposed method is a further tool that can be utilised by musicians and musicologists to connect
mathematical and physical concepts to musical concepts. It could, for example, be used to see if
different composers in various historical periods can be characterised by a given mean memory level
of their compositions, and also to compare two similar pieces (Cherlin, 1998; Mazzola et al., 2011;
Kramer, 1992). An average value of musical memory could, for example, characterise the works of
the same composer, or those of composers in the same artistic movement, or indeed those in a given
musical form (fugue, theme with variations, fantasia, etc.). The degree of musical non-Markovianity
can help identify the productions of specific composers, comparing a particular piece with the rest
of their musical output. This technique could be automated in each step, to allow easy comparisons
between larger musical compositions. Machine learning would constitute an invaluable tool for such
an endeavour. An intermediate stage of machine learning to extract lines automatically and divide
them into segments would be required to measure memory in more complex and extended musical
works. In fact, this would make easier the application of our method to, for example, a complete
symphony, allowing us to find motifs permeating the entire piece. Our algorithm can be applied to
larger systems; everything we need is .txt files with numerical parameters extracted from the musical
composition, and their subdivision into segments.

Information retrieved through musical non-Markovianity should in the future be compared with
systematic listener studies and music cognition data. In fact, we expect a correlation between the
amount of memory caught by the musical non-Markovianity quantifier and the qualitative judgement
of musical memory as assessed by listeners. While musically educated people could provide a more
refined judgement, we would expect a substantial degree of agreement between the human-assessed
mean amount of musical memory and the software-assessed degree of musical memory. Such a
comparison could constitute the object of a new experimental study. A listening study could also
help us improve our method. To build up our matrices, we consider for each parameter a centre and
distances from it. To make a distinction between up and down, we can use negative values for items
below the centre. The difference in information between the computation with all positive or with all
negative values can be compared against listeners’ assessments of musical memory. For example, we
could check if segments such as the one shown in Figure 2 lead to similar judgements, irrespective of
the order. This could be helpful to assess the amount of information loss while using positive-only
rather than positive and negative distances.

The idea of non-Markovian dynamics, as it is used in physics, can thus lead to a useful parameter
to characterise musical structures and identify individual musical pieces. This idea can have further
developments in the domain of Music Information Retrieval (MIR) for musical genre recognition.

We have focused on Western musical pieces from different epochs, but it is in principle also possible
to assess the degree of musical non-Markovianity of non-Western compositions, provided that a
MIDI transcription, with approximate pitches, durations, and intensities, is available. In the case of
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improvised and non-notated compositions, a transcription could also allow the application of our
method.

As future developments of our study, the idea of musical non-Markovianity can enrich the most recent
research in quantum computing applied to music (Miranda, 2021). Quantum computing is now being
used to compose generative music.10 The concept of musical non-Markovianity might contribute to
musical quantum computing as well. In particular, we could develop a new gate to shape the degree
of memory in musical segments:

time
A gate inspired by 

the controlled-not gate: 
inverts the sequence if 
the control sequence 

(top) starts with A 

Measurement; 
in this case: 

“play” the final 
result

D

D
A new gate: it imposes a 

degree of non-Markovianity 
to the dynamics of the 

system.

Each musical 
sequence is 

represented by a 
matrix.

We can create 
quantum logic gates 

that act on these 
matrices.

Given a matrix A, the operator 
D returns a matrix A’ = D[A] 

such that the degree of 
musical non-Markovianity 
MC[A’] is the desired number.

D

Figure 9: A possible new gate for a musical quantum circuit.

For example, given a musical segment s and a pair of parameters, we can evaluate the matrix A
and its degree of musical non-Markovianity: MC(A) = d. To obtain a transformed segment s′
(with matrix A′) whose degree of non-Markovianity is the desired d′, we can shape an operator D
returning a matrix A′ = D(A) such that MC(A

′) = d′. The original musical segment s can thus
be modified into a segment s′, such that s′ → A′ → MC(A

′) = d′. For the original segment,
we had s → A → MC(A) = d. This process can be formalised as a quantum gate D, taking as
inputs A (associated with s) and d′ and giving as output A′ (associated with s′), whose degree of
non-Markovianity is d′. In this way, we can build musical controllers inspired by quantum circuits,
that is, with musical segments as “states” and quantum gates as operations on them, creating circuits
like that presented in Fig. 9. Thus, we can imagine the development of “memory controllers” as
time-evolution operators to be added to quantum circuits, regulating the number of repetitions of
segments and the creation of internal loops according to their action on pitch, rhythm, harmony, or
loudness “spaces”.

Musical non-Markovianity can ultimately add a physical flavour to Quantum Computer Music,
connecting musical beauty with hidden processes in nature.

8 Appendix

8.1 Building Musical Matrices

To obtain musical matrices, we have developed an algorithm with the following steps (the code for
this, in C, can be found at: https://github.com/medusamedusa/musical_non-Markovianity):

10 As an example of the process, the result of measurement of nine qubits subjected to the Hadamard gate is
fed into an algorithm calculating triplets, which is then used to obtain parameters for sound synthesis (Miranda,
2020).

15

https://github.com/medusamedusa/musical_non-Markovianity


1. Evaluation of the normalised distance, for each coordinate, from its mean value.11

2. Counting the number of notes in a given interval (from the mean value), e.g., ∈
[0, 25], [25, 0.5], [0.5, 0.75], [0.75, 1].

We choose, as an example, only the couple of parameters frequency (ν) versus time of start (τ ) of
each note in the same segment. We consider the short musical segment of Fig. 10 as an example.

!"# $ $ $ $ $%& % %'

Figure 10: A simple musical segment to find the frequency-start matrix.

The musical parameters are frequencies, durations, starts, and intensities. In this example, for
simplicity, there is no intensity indication. Let us consider only frequencies and starts. The frequencies
(indicated as the semitone distances from middle C) are ν1 = 10, ν2 = 12, ν3 = 20, and the times
of start are as follows (the durations are all equal, and correspond to a crotchet = 4 in our scale):
τ1 = 0, τ2 = 4, τ3 = 8. The distances from the mean values are

δν1 = 4, δν2 = 2, δν3 = 6; δτ1 = 4, δτ2 = 0, δτ3 = 4.

To normalise these distances, the algorithm finds minimum and maximum distance values:

δνmin = 2, δνmax = 6; δτmin = 0, δτmax = 4.

The normalised distances are evaluated as follows (if δmax and δmin are equal, the algorithm does
not normalise):

δνNi =
δνi − δνmin

δνmax − δνmin
, δτNi =

δτi − δτmin

δτmax − δτmin

where i = 1, 2, 3 (in the example considered there are only three notes). In our example we obtain:

δνN1 = 0.5, δνN2 = 0, δνN3 = 1; δτN1 = 1, δτN2 = 0, δτN3 = 1.

Now it is possible to construct the frequency-start matrix for this segment. The matrix will contain,
in the rows, the number of notes with a normalised distance between 0 and 0.25, 0.25 and 0.5, 0.5
and 0.75, and 0.75 and 1 from the mean value of start; and, in the columns, the number of notes with
a normalised distance between 0 and 0.25, 0.25 and 0.5, 0.5 and 0.75, and 0.75 and 1 from the mean
value of frequency.

To avoid the difficulty of the different lengths of each segment (each segment can contain a different
number of notes, the notes can have different durations, and the segment in total can have different
durations, . . . ), we divide each matrix element by the total number of notes in the segment considered.
In this way, we obtain a matrix, and the sum of each element is 1. Thus, we can easily compare
segments of different lengths, and with different numbers of notes. In our simple example, the matrix
is:

ρ =

0.33 0 0 0
0 0 0 0
0 0 0 0.33
0 0 0 0.33

 .

The note distribution into matrix slots depends upon the size of the matrix and the number of notes
with similar characteristics. Notes with the same onsets and pitches are counted inside the same
matrix elements. Once we choose the matrix size, the code computes its matrix elements. The longer
and more complex the musical example, the more distributed the musical notes will be. We first build
a matrix for each musical segment. Then, we compare the obtained matrices to measure eventual
changes in the corresponding musical score.

11 From a music-theoretic perspective, variations of a musical segment can go either way: higher or lower
than the mean. For the purposes of our research, it is irrelevant if the added/modified notes are lower or higher
than a given pitch, for example, as long as they are added, and thus the original segment is modified. In future
research, a distinction between sides of the mean could be considered to find more fine-grained information.
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8.2 Musical Scores

In this subsection, we present the annotated scores for each musical piece considered in Section 5,
and we provide information concerning the comparison of segments.

In Bellini’s piece, we compared the first segment of section A with the first segment of section B, the
first segment of A with the first segment of A’, the second segment of A with the second segment of
A’, and the third segment of A with the third segment of A’. Concerning Maderna’s piece, it has not
been possible to operate a univocal division of the piece into segments as for Bellini’s composition.
We thus decided to focus approximately on time duration and to halve the composition, with a first
section containing the first five segments, and the second containing segments from 6 to 10, plus the
11th. We thus performed comparisons between segments 1 and 6, 2 and 7, 3 and 8, 4 and 9, 5 and 10,
and 6 and 11. From the five-page Glass composition, we include the first page. It was possible to
divide Glass’s piece clearly into segments and to make cross-comparisons, as has been done for the
Bellini.

8.7. Risultati

Figura 8.4: Parte vocale dell’aria per canto e pianoforte Dolente Immagine di V. Bellini. I
colori indicano i diversi periodi.

89

Figure 11: Annotated vocal part of Dolente Immagine by Vincenzo Bellini. Section A is composed
of three segments (shown in blue, green and red); Section B of one segment (turquoise); and Section
A’ of three segments (green, yellow, red).
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8.7. Risultati

Figura 8.5: Primo brano della suite Solo per oboe, di B. Maderna, dal manoscritto del
compositore. I colori indicano le diverse sequenze, delimitate da respiri.

90

Figure 12: Annotated score of Solo by Bruno Maderna (from the composer’s manuscript).

Figure 13: Annotated score of the first page of Metamorphosis III by Philip Glass.
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