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Abstract. In this article, we present R-VAE, a system designed for the
modeling and exploration of latent spaces learned from rhythms encoded
in MIDI clips. The system is based on a variational autoencoder neural
network, uses a data structure that is capable of encoding rhythms in sim-
ple and compound meter, and can learn models from little training data.
To facilitate the exploration of models, we implemented a visualizer that
relies on the dynamic nature of the pulsing rhythmic patterns. To test
our system in real-life musical practice, we collected small-scale datasets
of contemporary music genre rhythms and trained models with them. We
found that the non-linearities of the learned latent spaces coupled with
tactile interfaces to interact with the models were very expressive and
led to unexpected places in musical composition and live performance
settings. A music album was recorded and it was premiered at a major
music festival using the VAE latent space on stage.

Keywords: Rhythm, meter, latent space, music visualization, dimen-
sionality reduction

1 Introduction

In this article, we present research on customizing a variational autoencoder
(VAE) neural network to play with musical rhythms encoded within a latent
space. To allow the encoding of a wide range of rhythms, we implemented a data
structure that is capable of accommodating the onsets of rhythms in simple and
compound meter while also encoding their velocities and their deviations from
the grid—known as microtiming. To facilitate the exploration and performance
with the rhythmic models, we designed and implemented a visualizer that relies
directly on the pulsing rhythmic patterns to provide a dynamic representation of
latent spaces. The system comes packaged as an instrument for a popular digital
audio workstation and can generate models using minimal training data—as few
as one dozen MIDI clips with rhythms. To the best of our knowledge, this is the
first time that a network architecture devoted to the modeling of drum patterns
has been used to encode rhythms in simple and compound meter, and the first
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time that a dynamic visualization has been implemented to observe latent spaces
learned from rhythmic patterns.

We examined and interrogated our approach to rhythm modeling in real-life
music production and performance by collecting a series of small-scale datasets of
rhythms, training models with them, and exploring the resulting latent spaces
in improvisation and live performance contexts. A music album was recorded
and premiered at a major music festival using the VAE latent space on stage.
We found that beat making and rhythm generation with latent representations
can lead to unexpected and surprising musical places because datapoints in the
space are organized in non-linear ways. We also observed that being able to
model rhythm representations with little data makes the human influence on the
learning process more clear. This can have huge implications in creative practice
because performers can understand where they have agency and increase their
sense of ownership when training and performing with a machine learning model.

This article is organized as follows: in Section 2 we present background in-
formation on musical genre, rhythm, meter, and the modeling of rhythms us-
ing machine learning. We also comment on some of the biases that arise when
choosing specific data representations and network architectures. In Section 3 we
explain the data representation and network topology we use to model a wide
range of rhythms while using little training data. We detail the rationale and
implementation of the rhythmic latent space visualizer and talk about how it
uncovers features of the latent space. We devote Section 4 to explaining how we
validate our design and implementation by using it in real-life musical practice.
Finally, in Section 5 we offer our thoughts, insights, conclusions, and future work
after developing and performing with our system.

2 Background and Related Work

In this section, we present background information and previous research on
rhythm generation systems, the concept of meter, and how different genres—
both traditional and contemporary—use different meters. We follow on intro-
ducing how some machine learning systems have been used to learn compact,
latent space representations of rhythm, and how they have overlooked encoding
rhythms in compound meter, both due to the datasets and data representation
chosen. Finally, we comment on biases introduced when not considering data and
data representations able to model diverse music, and the need of using simple
network architectures to allow creative practitioners in general, and musicians
in particular, to learn and customize rhythmic models.

2.1 Rhythm generation systems

Rhythm generation and beat making are an intrinsic part of contemporary elec-
tronic music production. Common tools available to the music producer for gen-
erating, programming, or processing rhythmic patterns are trackers, sequencers,
and drum machines; but looping systems based on audio or MIDI clips have also
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become extremely popular. The former set of tools have been part of professional
music production for the past 40 years (since the release of the programmable
drum machine Roland CR78 in 1978 and the successful sample-based Linndrum
LM-1 in 1980), and the latter for the past 20 years (since the release of Ableton
Live in 2001). Musicians have used these tools and instruments extensively in
all sorts of music genres.

Machine-learning-driven musical systems for rhythm generation have started
to appear but are not yet commonly used in contemporary rhythm generation
and beat making. There are currently a few standalone and web applications
that allow musicians to play and manipulate rhythms using latent space repre-
sentations, such as Magenta Studio (Roberts et al., 2019), DrumNet (Lattner &
Grachten, 2019), Beat Blender,3 RhythmVAE (Tokui, 2020), and DrumVAE.4

Within the low-dimensional latent space representations of these applications,
the distance of the rhythmic patterns is based on similarities learned from the
data through an iterative process of optimization at training time. The result-
ing space is continuous and (ideally) easy to navigate after reducing its dimen-
sionality, allowing the real-time retrieval and generation of rhythmic patterns.
However, these systems are not easily integrated into digital music production
workflows (Magenta Studio and RhythmVAE being notable exceptions), they are
not really designed for live performance contexts, and they are hard to train, re-
sulting in a lack of customization capabilities for professional use (Gómez Maŕın,
2018; Roberts et al., 2019). Our goal is to design a generative rhythm system
that can be trained with minimal training data, to better enable artists without
extensive computational resources to build and explore bespoke rhythm models.
To use such a system in contemporary music production and live performance
settings, it has to be capable of performing real-time inference, close to real-time
training, and be capable of being interconnected to other systems using standard
communication protocols such as MIDI or Open Sound Control (Wright, 2005).

2.2 Meter and music genres

We are interested on modeling and playing with contemporary music genre
rhythms such as footwork, trap, 2-step, gqom, drum and bass, and dembow. The
appeal of these rhythms comes from their tempo octaves—that is, their actual
tempo is ambiguous and can be perceived or embodied at one specific tempo,
or half or double that tempo (Schreiber & Müller, 2014). For example, when
dancing to a drum and bass track, people can embody the music as if the tempo
is 160 beats per minute (bpm) or as if it is 80 bpm. In addition, triplets are
an intrinsic part of the rhythms, as is easily perceived in dubstep or trap, for
example (Duinker, 2019; Phillips, 2021). This stylistic signature is sometimes
so strong, that the meter of those rhythms is perceived differently, not just the
individual rhythmic elements in triplets.

3 https://experiments.withgoogle.com/ai/beat-blender/view/
4 https://vibertthio.com/drum-vae-client/

https://experiments.withgoogle.com/ai/beat-blender/view/
https://vibertthio.com/drum-vae-client/
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The meter is the metrical structure or timing framework by which a series of
beats are organized into repeating patterns (Large, 2008). Listeners mentally fit
rhythms to meter based on the position of accents, i.e., instances where a note
is salient relative to its neighbors (Samuels, 2018). We therefore can understand
meter as “a mode of attending” when experiencing rhythms (Gjerdingen, 1989).
Meter in which each beat has subdivisions as powers of two, such as in 2/4, 3/4,
or 4/4 is called simple meter. Meter in which each beat has three or multiples
of three subdivisions, such as 6/8, 9/8, or 12/8, is referred to as compound
meter. London (2012) states that—although there are differences in motion and
expression between simple and compound meter—the basic distinction between
“twoness” and “threeness” is the essential part of the character of each meter.

The combination of simple and compound meter is the foundation of many
African and Latin American rhythms such as tresillo and bembé (Brandel, 1959;
Peñalosa & Greenwood, 2009), but is also an intrinsic part of much contemporary
music. Depending on the genre, it is common to hear a simple meter core pattern
with one or more instruments doing rhythmic phrases in triplets on top of it. For
example, in trap music this effect happens usually in the hi-hat patterns—this
genre is greatly defined by this effect—and sometimes in the vocal flow. This
technique used in filter-modulated bass lines is also a key characteristic of the
dubstep genre.

Although compound meter and triplets are widely used in different music
genres and cultures, several studies on the modeling and generation of rhythm
using machine learning have supposed simple meter suffices to represent music.
Some researchers have assumed that “the very large majority” of Western music
“follows dyadic patterns” and can be partitioned in powers of two (Paiement,
Bengio, Grandvalet, & Eck, 2008), and others have taken this binary-normative
view of music—even when studying the perception of beats and the complexity
of rhythms (Bouwer, Burgoyne, Odijk, Honing, & Grahn, 2018). There are some
notable exceptions. The early study by Ellis and Arroyo (2004) found evidence of
compound meter is one of the main principal component bases when analyzing a
dataset of rhythms encoded in MIDI files of 10 different genres. Later on, Mauch
and Dixon (2012) implemented a data representation with a grid granularity of
12 equally spaced divisions per beat span, thus allowing the representation of
binary and ternary subdivisions with the same grid. More recently, Oore, Simon,
Dieleman, Eck, and Simonyan (2020) made no assumptions about any underlying
musical grid or meter and described rhythms solely in terms of their durations
and time differences. Colombo (2021) applied domain knowledge to design a
meter-normalized rhythm representation to encode 32 different combinations of
durations and timeshifts.

Considering all recent advances in the modeling of rhythm, it is unclear
why most drum generation and beat making systems based on machine learning
have assumed a simple meter grid that is not able to encode drum patterns and
rhythms from a large musical repertoire. In the next subsections, we will review
some of these systems as well as the datasets that have been used to train them.
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2.3 Rhythm and latent spaces

Several recent research projects have aimed at modeling and encoding rhythmic
drum patterns using machine learning. Given a set of user-provided examples,
their regularities are learned and encoded into a model. Then, the user can
sample patterns from the original distribution or generate new, unheard rhythms.
For instance, Choi, Fazekas, and Sandler (2016) created a model trained on
drum patterns from songs by Metallica to generate new rhythmic sequences.
Their approach was based on a text-based LSTM (Long Short Term Memory)
network, so they had to adapt and encode the rhythm onsets to fit the data
representation. They limited the number of events in a bar to 16 by quantizing
the drum tracks to 16th notes in a simple meter binary grid. They trained a
model using MIDI files of drum tracks of songs by Metallica, and created drum
sequences that were “reasonable rock drum patterns.” However, since the data
representation they used did not encode the microtiming of onsets nor how hard
they were struck—known as velocity in the MIDI domain—the resulting patterns
were very rigid. Instead of focusing on a specific musical artist or style, Nikolov
(2016) trained another LSTM network on drum patterns from a wide range of
music genres. This work used professionally produced MIDI loops, increased the
quantization grid to a 32nd note, but used only rhythms in simple meter with a
4/4 time signature.

To learn longer-term musical structure, researchers from the Google Magenta
team experimented with language modeling and LSTMs to encode and generate
melodies and drum patterns. They released network architectures designed to
learn representations of melodies5 and rhythms6 encoded in a symbolic format,
as well as models trained on large datasets containing “thousands of MIDI files”
of undisclosed origin. The data representation did not encode microtimings or
velocities. Using the same data representations implemented in those projects,
and with the goal of modeling sequences with even longer-term structure, the
Magenta team released MusicVAE (Roberts, Engel, Raffel, Hawthorne, & Eck,
2018). This network used a hierarchical variational autoencoder (VAE) architec-
ture to encode and generate melodies, drums, and “trios” consisting of a drum
part, a bass line, and a melodic line. For these three categories, the Magenta
team released models that were trained on a large dataset of MIDI files collected
from the web. Roberts et al. reported that MusicVAE was able to generate 2-bar
drum sequences reliably, but failed when trying to reconstruct 16-bar sequences.

In the aforementioned approaches to the modeling of drum patterns, only
the position of the drum onsets was encoded, not their microtiming or velocity.
These two characteristics are important for giving the drum loops a human feel,
or groove. To overcome those flaws, Gillick, Roberts, Engel, Eck, and Bamman
(2019) and the Magenta team released GrooVAE, a set of models trained on
real drum performances that encoded the velocities and microtimings for each
onset. The data representation of GrooVAE used a binary grid with a resolution

5 https://github.com/magenta/magenta/tree/master/magenta/models/

melody rnn
6 https://github.com/magenta/magenta/tree/master/magenta/models/drums rnn

https://github.com/magenta/magenta/tree/master/magenta/models/melody_rnn
https://github.com/magenta/magenta/tree/master/magenta/models/melody_rnn
https://github.com/magenta/magenta/tree/master/magenta/models/drums_rnn
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of 16th notes and relied on the microtiming factor to shift the onsets. However,
this factor was only able to encode small deviations from the grid resulting in
the inability to encode rhythms in compound meter or with rhythmic elements
in triplets.

Several applications have been released based on the Magenta binary view of
music, its data representations, and pre-trained models. For example, the Neural
Drum Machine7 is a web-based application in which the user seeds the system
with a short rhythmic sequence, and the model “imagines” the continuation.
Beat Blender packages MusicVAE pre-trained models in a web application in
which the user plays back patterns and creates paths in a latent space filled
with rhythms. The Drum Beats Latent Space Explorer8 is another web appli-
cation that uses a VAE architecture trained on 33K MIDI drum files to learn
a bi-dimensional latent space representation that can be explored in a browser.
Additionally, the Magenta team bundled several of the applications developed
in their research group into Magenta Studio, a suite of applications and models
to be used in standalone mode or as an Ableton Live plugin that works directly
with MIDI data (Roberts et al., 2019). Although using Magenta Studio directly
in Ableton is useful for music production the lack of direct training within the
application does not allow musicians to generate bespoke models, which could
avert its use in professional and creative contexts. R-VAE, the system we present
in this article, permits musicians to train custom models of varying-size datasets.

DrumNet is a project developed at Sony CSL aiming at the conditional gen-
eration of drum patterns based on the rhythmic relationships learned from dif-
ferent instruments in multi-track recordings and encoded into a 16-dimensional
space (Lattner & Grachten, 2019). The system is trained with audio data but
outputs MIDI or audio. Each drum instrument is visualized in a two-dimensional
latent space where a heat map depicts the density of training data points in it.
All the examples shown in the accompanying site are in simple meter,9 and
there is no explanation of the training data beyond saying that comes from
pop/rock/electro songs. The application is still being tested and is not open to
the public. Finally, M4L.RhythmVAE (Tokui, 2020) is a rhythm generation sys-
tem that encodes onsets, velocities, and microtimings. It is based on GrooVAE
but has a much simpler network architecture for faster training. The author im-
plemented it as an Ableton plugin for easy integration into musical production
contexts. We tested the device and realized it had most of the features we were
looking for. However, it wasn’t able to encode triplets and there was no way of
knowing how the rhythmic patterns were distributed in the latent space.

All in all, the assumption that the structure of most music can be expressed
as powers of two has resulted in the inability to represent, model, and generate
computationally music from significant existing genres.

7 https://bit.ly/nikolov-neuralbeats
8 http://altsoph.com/pp/dsp/map.html
9 https://sites.google.com/view/drum-generation

https://bit.ly/nikolov-neuralbeats
http://altsoph.com/pp/dsp/map.html
https://sites.google.com/view/drum-generation
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2.4 Datasets of rhythms

The exclusive use of binary rhythmic representations is also common within
publicly available rhythm datasets. For instance, Battenberg and Wessel (2012)
collected a dataset of rhythms using an electronic drum. They recorded a large
number of rhythmic sequences aiming at having a sizeable collection of popu-
lar rhythmic styles. However, the dataset had a strong bias toward rock and
the authors quantized all collected data to exact 16th note subdivisions. Mauch
and Dixon (2012) performed a corpus study using almost five million one-bar-
length files extracted from more than 70 thousand symbolic music files from the
web. The authors reported the dataset seems to mostly include pop/rock, jazz,
classical, film music, and country/folk. There is no reference to new genres or
traditional music and the authors report that 90 percent of the data was in 4/4,
and only 1.5 percent was in compound meter. Since in the research presented in
this article we want to model drum patterns and rhythms in simple and com-
pound meter, using datasets of genres with a heavy bias towards simple meter
in datasets is not useful.

In terms of dataset size and processing power, most of the architectures,
models, and applications we have reviewed have been trained using very large
datasets of rhythms. For example, MusicVAE models were trained on about 1.5
million unique MIDI files (Roberts et al., 2018), GrooVAE was trained on the
13 hours of MIDI and audio drumming of the Groove MIDI dataset (Gillick
et al., 2019), and the Expanded Groove MIDI Dataset models were trained on
444 hours of music (Callender, Hawthorne, & Engel, 2020). Such approaches to
modeling rhythm within very large-scale collections entail practical challenges
because they attempt to learn commonalities from very disparate data. For ex-
ample, learning a single rhythmic model from rock, jazz, house, and reggaeton
can be challenging because the data may be essentially different, and may re-
quire large datasets and processing power to converge to something useful. As
a result, creating generic models from large and diverse data can be interesting
and reasonable from computational or music-theoretic points of view but this
can also hinder customization. One of the costs of small-sample, low-dimension
machine learning models is that the resulting latent space is often extremely
specific to the source data and may differ dramatically from a more general la-
tent rhythmic space. However, the ability to train models from smaller datasets
can enable the modeling of niche genres or even a personal style, while requir-
ing fewer resources for training. This is can be particularly useful for individual
creative practitioners that usually do not have access to large datasets or the
processing power to train very large models.

Some prior work has enabled musicians to create bespoke supervised learning
systems with small training sets. For instance, Wekinator (Fiebrink, Trueman, &
Cook, 2009) uses shallow multi-layer perceptron neural networks to learn bespoke
mapping functions (e.g., from a performer’s gestures to sound synthesis parame-
ters) using small datasets generated by musicians in real time. Dinculescu, Engel,
and Roberts (2019) designed a system to control a large and generic latent vari-
able model with a smaller one that is trained quickly. Their approach learns
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a compressed representation of the latent vectors of MusicVAE and generates
musical melodies from only portions of its latent space. The user can steer this
process by seeding melodies using a web-based app.

2.5 Comments on biases

There are two big issues in previous work on the modeling of rhythms using
latent space representations: (i) all previous approaches were not designed to
encode music in compound meter, and (ii) to be trained, most systems have been
designed for and trained with massive datasets and large processing power—so
training usually takes a very long time and cannot be done at home. “The more
data the better,” a typical approach in machine learning systems makes sense for
some contexts, but when designing systems that provide human creative agency,
a small-scale approach can be more meaningful.

These two issues are problematic because they introduce biases. The first
issue introduces biases toward particular genres and cultures because only cer-
tain rhythm types can be encoded and modeled by the neural network. The
second issue introduces biases towards particular types of users because large
architectures and expensive datasets only allow some people (or corporations)
to train these models, hindering access to customization. We think that choosing
a model architecture large enough to sufficiently learn a reasonable representa-
tion of small-scale and more manageable datasets is more inclusive of people
working in home environments. A smaller scale may lead to better chances of
having trainable systems working in real time, which are needed for musical
contexts where customization is important.

As a result, in our approach to contemporary beat making using machine
learning we want to try to overcome these biases by allowing the musician to
(i) use a single data representation to encode rhythms in simple and compound
meter, (ii) train models with small datasets and low processing power. In the
next section, we present how these ideas are integrated into our system.

3 Development

In this section, we present the data representation we chose to encode rhythms
in different meters, the network architecture and software stack we selected to
train models and generate rhythmic sequences, the interaction metaphor and
parameters that are exposed in the user interfaces, and a novel solution to observe
the rhythmic patterns in the latent space.

3.1 Data structure

In this research, we want to encode repeating drum rhythms. A fixed-length
representation is sufficient to encode such patterns, but the underlying data
must be capable of appropriately accommodating different meters within a single
structure. As we discussed in Section 2, most previous research for the modeling
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Fig. 1. Data structure chosen to allocate simple and compound meter rhythms. The
horizontal axis shows all 96 ticks in one 4/4 bar with 24 ppqn (pulses per quarter note)
resolution. The y axis show standard subdivisions, where 4 indicates quarter notes, 8
indicates eight notes, 8T is used for eight triplets, and so on. The maximum resolution
is a 32nd triplet note.

of rhythm used a grid of sixteen 16th notes per bar of 4/4 time, corresponding
to a resolution of 4 ppqn (i.e., four pulses—or subdivisions—per quarter note).
To properly encode onsets in simple and compound meter and finer grids, we
implemented the DIN Sync-24 data structure introduced by Roland in their
drum machines and sequencers of the early eighties (e.g., TR606, TR808, TR909,
TB303, MC4), and later incorporated in the MIDI 1.0 standard (Graves-Brown,
2014). This structure has a data resolution of 24 ppqn which is optimal for
our purposes because a quarter note is divided into 24 pulses, hence allowing
divisions by two and three. As can be see in Figure 1, this representation allows
to encode up to 32nd triplet notes.

3.2 Neural network architecture

Autoencoders (Kingma & Welling, 2014) are a popular neural network archi-
tecture for generative systems. These neural networks are trained to copy their
input to their output by encoding the training data into a lower-dimensional la-
tent representation and then decoding this latent representation back to output
data. Autoencoders learn to compress the data while minimizing the reconstruc-
tion error. Autoencoders include an encoder component capable of mapping
real-world phenomena (here, a rhythm) onto this compact representation (i.e.,
a vector in latent space), as well as a decoder component capable of generating
realistic new content (here, new rhythms) from any new latent vector. Nearby
points in the latent space tend to represent similar phenomena (here, musically
similar rhythms). Consequently, a sequence of points along a continuous curve in
latent space should be decodable into a sequence of rhythms that are perceived
as gradually changing over time.

Variational autoencoders (VAEs) employ additional assumptions and con-
straints to explicitly attempt to create a latent space that affords smooth in-
terpolation. Specifically, the encoder component of a VAE maps an input to
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Fig. 2. At training time, rhythmic data in symbolic music format is described in terms
of their onsets, velocities, and microtimings, and encoded into a latent space. At gen-
eration time, a musician samples this space directly using a performance interface. The
rhythmic patterns are then retrieved and decoded into a symbolic music format.

parameters of a probability distribution, rather than to a single latent vector.
To generate new content, samples are drawn from this probability distribution,
and the decoder then maps from these samples to new content. Given the gener-
ative possibilities of VAEs, we chose this architecture as the basis to implement
a system we called R-VAE. (Vigliensoni, McCallum, & Fiebrink, 2020).

R-VAE is based on the Tensorflow.js VAE implementation tfjs-vae10 and
M4L.RhythmVAE (Tokui, 2020). While the former provides the Tensorflow back-
end for the VAE, the latter provides a data structure based on the one by Gillick
et al. (2019) that encodes the onsets of rhythms, their velocities, and microtim-
ings. We adapted this system to accommodate up to 32nd triplets and created
a dynamic visualizer that reveals all the patterns in a given latent space at a
time. To determine the dimension of the vectors to be processed by the network,
we examined commercial MIDI drum loops libraries11,12 and sample packs13,14

of contemporary music rhythms and found that most encoded four instruments
(i.e., kick, snare, closed hi-hat, open hi-hat). Several added two more instruments
(usually mapped to cymbals), and a few incorporated three more instruments (in
general mapped to toms, cowbell, and percussion), adding up to a total of nine
instruments. This number of instruments is the same found in previous research
on drum sound classification (Herrera, Yeterian, & Gouyon, 2002), and used in
implementations by Tokui (2020) and Gillick et al. (2019). As a result, our cho-
sen data representation for the encoding of one bar of 4/4 time comprises three
vectors (for onsets, velocities, and microtimings) of size 864. This vector size
accommodates 24 pulses × 4 quarter notes × 9 drum instruments. The values
in the encoding and decoding vectors depend on their data. The onset vectors

10 https://github.com/songer1993/tfjs-vae
11 https://groovemonkee.com/collections/midi-loops
12 https://www.thelooploft.com/collections/midi-loops
13 https://cymatics.fm/collections/drum-kits
14 https://www.ghostsyndicate.net/

https://github.com/songer1993/tfjs-vae
https://groovemonkee.com/collections/midi-loops
https://www.thelooploft.com/collections/midi-loops
https://cymatics.fm/collections/drum-kits
https://www.ghostsyndicate.net/
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are encoded with 0 or 1 according to the onset position. Velocities are encoded
as a float number between ]0, 1] according to the normalized MIDI velocities of
each onset. Microtimings are encoded with a float between ]− 1, 1[ according to
their time-shift from the grid, where 0 is the exact, nominal position in the grid,
and ±1 is one tick before or ahead of the nominal onset position.

Our neural network configuration thus consists of a VAE architecture with
864 dimensions for the input, 512 for one intermediate layer, and two dimensions
for the latent space. The batch size is set to 64, the optimization algorithm to
Adam, and the activation function to LeakyReLU. The favoring of fully con-
nected feedforward layers instead of the bidirectional LSTMs, as in Gillick et
al. (2019), permits faster training using CPUs. Figure 2 shows a schematic dia-
gram of the R-VAE architecture, showing the encoding of onsets, velocities, and
microtimings of the rhythmic data.

For model training and playback, R-VAE is implemented as a Max for Live
device. 15 This implementation has the advantage of straightforward interconnec-
tion with Ableton, offering fast and simple MIDI and audio routing for changing
and processing drum sounds, easy mapping using MIDI or OSC to play with the
latent space using a gestural controller, and device automation capabilities for
fine control during recording or mixdown.

To evaluate the performance of the model being learned and to prevent over-
fitting, at training time the data is split randomly into training and validation
sets using a 5:1 proportion for training:validation. The training and validation
losses are computed as the mean of the onset, velocity, and microtiming losses,
and are displayed and plotted dynamically versus the epoch number at training
time. These curves allow the user to decide when there is no further significant
reduction in the loss to halt the training process at any moment.

We informally compared the computing needs of our implementation with
other architectures such as Magenta’s MusicVAE and GrooVAE. These network
architectures are more complex and larger than our implementation and we
noted that the overall training time—even with a GPU—is in the order of hours
when processing large datasets. In comparison, our implementation is meant to
be used with little data and can be trained on a CPU in shorter periods. For
example, musically useful and smooth models with a limited scope in variability,
but that can be used in creative practice are learned from sets of dozen data
points in about 45 seconds. We found that the reduction of training time and
the required amount of data enables a greater ability to experiment with data
and model training, and, ultimately, facilitates interactive musical exploration
with the system.

3.3 Web-based model player

In addition to the Ableton device, we also released R-VAE as a web-based ap-
plication that can be used as a rhythm model player, enabling performers to

15 https://github.com/vigliensoni/R-VAE
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Fig. 3. The user interface of R-VAE-JS web application. The latent space on the right
can be explored by moving the yellow circle. Additional knobs for threshold and noise,
as well as mute buttons for “kick,” “snare,” and “hi-hat,” allow the performer to
interact with and control the web-based instrument. Three web audio interfaces (i.e.,
audio spectrum, oscilloscope, and timing) are displayed on the left for visual feedback.

explore rhythmic latent spaces and make music directly in the browser. In Fig-
ure 3 we show the user interface of the web-based version of R-VAE. We can see
the performance space delimited by the black zone on the right.

To provide performers with a meaningful metaphor for their interaction with
the system, we say that they are in control of a playback head that can be
placed and moved in zones of the performance space to retrieve and decode
rhythmic patterns. As such, performers can explore and play directly with the
performance space through two basic gestures. First, clicking on any given point
of the latent space will retrieve and decode a rhythm sequence. Second, dragging
between points in the space enables performers to interpolate between rhythms.
The user interface exposes additional controls to add variability to the network
decoding. The noise knob adds a random value taken from a normal distribution
to the position in the latent space where points are being decoded. From the
user perspective, this variable controls the precision of the mapping between the
performance space to the latent space. Higher noise values will retrieve rhythms
that are further away from the chosen position, and lower values will retrieve
closer rhythms. Threshold controls the complexity of the patterns decoded from
the latent space by setting a number above which the onset probabilities retrieved
from the latent space will trigger an onset. This results in higher threshold values
triggering simpler sequences, and lower threshold values triggering more complex
ones. In addition, mute buttons per instrument allow the performer to silence
instruments at any given moment.
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3.4 Dynamic visualizer

The performance space shown in the R-VAE interface enables the performer
to retrieve rhythmic patterns from the latent space. However, from a human-
computer interaction point of view, this poses challenges because the latent space
is a continuous function where salient characteristics of the original distribution
are encoded but the space axes have no clear labels. In other words, there are
no visual cues about how the rhythmic pattern onsets are distributed in the
space, and so the performer is “blind” to the characteristics of the space. To
alleviate the lack of visual feedback and improve the playability of the system,
we designed and developed a dynamic visualizer.

Most of the approaches to learning and playing with rhythmic latent spaces
reviewed in Section 2 provide a static visualization of the latent space. This
visualization is usually a static piano roll representation that displays the onset
patterns for one point in the space at a time. This means the performer does not
have cues about how the rhythmic patterns are organized in the rest of the space.
To uncover the structure of the latent space we implemented a visualization
that relies on the temporal, dynamic nature of the musical events (Vigliensoni,
McCallum, Maestre, & Fiebrink, 2020).

The dynamic visualization tool is based on mapping the onset probability
values retrieved from the drum instruments for each point in the space to the
brightness of their representation in the user interface canvas. To achieve this, we
sample the original, continuous two-dimensional latent space at discrete points
over time and retrieve the onset probabilities for the drum instruments. Then,
we scale the instruments’ probability values to the range [0, 255] and fill square
matrices with these scaled probability values. Cells within each matrix corre-
spond to a specific drum instrument. These instruments are rendered in the user
interface canvas using a single color per instrument and 8-bit RGBA values.

Figure 4 illustrates the mapping from the latent space to the dynamic visual-
ization. On the left of the figure, we see four matrices of order 3, corresponding
to four discrete points (i.e., four rhythms) in the latent space. Using a clocking
system sync to a specific tempo, an imaginary playback head traverses all the
matrices from time t = 0 to t = T − 1. Each instrument in a rhythmic pattern
will trigger a specific matrix cell with a single color. For example, a kick will
only trigger red pixels in the position [0, 0] of the matrices, a snare will only
trigger green pixels in position [0, 1], and hi-hats will only highlight pixels in
blue in position [0, 2]. The time dimension t shows how the colors within each of
the matrices’ cells change according to the onset probabilities retrieved from the
latent space for the corresponding instruments. Each pixel of the visualization
canvas is mapped to the latent space and updated accordingly over time. The
data representation of R-VAE encodes nine drum instruments that can be dis-
played in the visualizer, but in the current prototype we opted to display only
the three most common instruments (i.e., kick, snare, and hi-hat), which form
the core of most rhythms in popular music (Mauch & Dixon, 2012). This results
in a natural vertical spacing of the patterns on the screen.
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Fig. 4. Diagram illustrating the mapping from the latent space to the performance
space canvas. On the left, four discrete points (i.e., four rhythms) of the latent space are
sampled over time, each represented in the figure as a 3-by-3 matrix. Each instrument
in a rhythmic pattern will trigger a specific matrix cell with a single color. On the
right, the full performance space, made of 900 points sampled from the latent space, is
shown. Here, the visualization shows how the activation of different drum instruments
(i.e., kick, snare, and hi-hat) differs across the latent space for this particular moment
in time, t. A full measure consists of 96 of these images, played in sequence to produce
a dynamic animation.

On the right of the figure, we see an image capture of the full performance
space at time t. At this specific moment, hi-hats (in blue) are happening in
most of the space, except for the upper right part, where kicks (in red) are
happening. Snares (in green) are not triggered alone. It must be noted that this
representation and distribution of onsets change rapidly, at a pace of 96 images
per bar of music.

Both implementations of R-VAE, for Ableton Live16 and the R-VAE-JS
browser-based model player,17 are available for public use. Several models trained
on rhythms in different meters are also available.18 A video demonstrating a web-
based performance with R-VAE-JS at the Network Music Festival 2020 is avail-
able at https://youtu.be/lnRe5vZ6Sps. The video shows the user interface in
action, the dynamic visualization of the latent space, ane the control parameters.
The drum sounds in the video come from an external drum synthesizer triggered
via MIDI. The external triggering of sounds allows further variability, such as
real-time control of the drum sounds, compression, and additional effects.

16 https://github.com/vigliensoni/R-VAE
17 https://github.com/vigliensoni/R-VAE-JS
18 https://github.com/vigliensoni/R-VAE-models

https://youtu.be/lnRe5vZ6Sps
https://github.com/vigliensoni/R-VAE
https://github.com/vigliensoni/R-VAE-JS
https://github.com/vigliensoni/R-VAE-models
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4 R-VAE in Musical Practice

In this section, we provide details and insights on using R-VAE in a full cy-
cle of professional music-making–––from data collection and model training to
composing, performing, and premiering an album in a music festival. We spent
several months collecting and transcribing rhythms; training models; adding and
removing datapoints; improvising with the generated latent spaces; and retrain-
ing the models if needed. We repeated this process several times for different
datasets until we got to a point where we had rhythmic spaces that were smooth
and had enough variability for using them in real-life music production. We
then composed and recorded a set of nine musical pieces and premiered them
live using R-VAE on stage.

4.1 Data collection

Given the bias of existing machine learning rhythmic datasets towards a nar-
row range of mainstream genres, we compiled a series of our own featuring the
rhythms we are interested in from modern music genres. As we also found pro-
visions lacking in commercial MIDI libraries, we decided to create the symbolic
files by transcribing them manually from audio, or by correcting the output of
audio to MIDI converters. For this very reason, our datasets are small, in the
range of a dozen of MIDI clips each.

4.2 Feasibility of training from small datasets

Given the restricted size of our datasets, our first experiments explored the
feasibility of using R-VAE to learn useful representations in this context. The
variables and parameters that, at this point, we had to control the learning
process were the data—both in quantity and type—and the number of training
epochs. We started by learning models from a small but controlled amount of
data, that is four MIDI clips (two in simple and two in compound meter), then
we gradually increased the number of training epochs from 10 to 1000 epochs and
we assessed the subjective qualities of the resulting latent spaces by visualizing,
playing, and comparing them with the original training data.

In Figure 5 we show the visualization of the latent spaces generated by this
small dataset for 10, 100, and 1000 training epochs. In this static visualization,
and for the sake of a good comparison, we show the same pulse per measure
for the three spaces (a dynamic version of this visualization can be watched
at https://youtu.be/z0nPZGYJ6Fs). It can be seen that after 10 epochs, the
model is undertrained resulting in half of the space being mostly noise. In these
non-ideal conditions, the outputs of the network are random onsets, velocities,
and microtimings in large portions of the latent space. At 100 epochs, the amount
of noise is reduced greatly, and it completely disappears at 1,000 epochs. When
we increased the number of training epochs to values higher than 250 the training

https://youtu.be/z0nPZGYJ6Fs
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Fig. 5. Visualization of the latent space configuration of a small training set consisting
of four MIDI clips after different three training cycles (i.e., 10, 100, and 1000 training
epochs). The static plot shows the first pulse of the measure. The visualizer helps the
performer to easily detect noisy zones.

loss was usually higher than the validation loss. This resulted in overfitted mod-
els, where the spaces were clean and the rhythmic zones were clearly delimited,
but the transitions were more abrupt.

We then incrementally increased the number of MIDI clips, varied the number
of training epochs, and observed the resulting spaces using the visualizer to assess
the training process qualitatively. We found that in around a dozen clips, the
latent spaces started to be smoother and could create better interpolations. This
ability, however, was not only dependent on the number of clips but also on their
rhythmic characteristics. We found that smoother transitions were learned when
providing examples of different but related patterns. Using very small datasets
as were using may create some artifacts in the latent space, such as zones where
the training process did not converge and there were random onsets, especially
when using low thresholds. In such cases, we added more datapoints to the
training data or we used higher thresholds when we were performing. All in all,
we found that a sweet spot between stability and variability for learning usable
latent spaces happened in between 100 and 250 epochs for one or two dozen
MIDI clips. The time required to train the spaces was linear to the number of
epochs and training data. In the context of small-scale datasets, and 100 to 150
epochs, this time varied between 36 and 150 seconds (running on a 2.8 GHz Intel
Core i7 computer). This amount of time was acceptable for trying and assessing
different configurations of data and the system, and testing the results in musical
practice.

In Figure 6 we show the interpolation of onsets between two points of a latent
space learned from 12 clips of footwork, with a threshold value set at 0.3. Kick,
snare, and hi-hat onsets are red, yellow, and blue. Whisker lines on top of each
onset show the corresponding velocity decoded from the latent space. Whisker
lines touching the upper tip of each onset diamond indicate maximum velocity.
We can see that the model can interpolate from patterns in a very binary feel (i.e,
patterns one to ten), to patterns with elements in compound meter (i.e., patterns
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Fig. 6. Interpolation between two points of a latent space learned from 12 MIDI clips
of footwork using a threshold value of 0.3. Each row shows the kick, snare, and hi-hat
onset for one beat. All rows except 17 and 18, exhibit a unique onset pattern of kick,
snare, and hi-hat. Velocities for each onset are shown using a whisker line.
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Fig. 7. Interpolation between points in the latent space displaying the velocities for
each onset. The lower rows show the varying MIDI velocities for the three drum instru-
ments across the decoded patterns. Figure 6 showed that patterns 17 and 18 exhibited
the same onset structure. Here we see that their velocities are different and so are those
patterns.

11 to 20). This change can be easily visualized in the kick and hi-hat patterns. It
is worth mentioning that sampling the space with different threshold values will
retrieve a different set of patterns from the space. The lower the threshold value,
the higher the number of onsets and the complexity of the decoded patterns.
The onsets in this particular interpolation correspond to a small subset of all
available rhythms in the continuous space and were retrieved by sampling the
space at regular intervals. It can be seen that all the patterns are different, except
for patterns 17 and 18, which exhibit the same onset structure. However, when
analyzing their velocities, we can see that they are different, as can be seen in
Figure 7.

All in all, a dozen MIDI clips can generate a space that encodes many more
patterns than the original ones.

4.3 Composition

With the set of R-VAE models we trained from the small-scale datasets, one
of the authors of this article composed a series of nine musical works grouped
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under the name of “Clastic Music.” Clast is a term used in geology that refers
to rocks made of fragments or sediments of pre-existing rocks. We found this
akin to how we are using pre-existing drum patterns to create new fragments
and rhythmic structures.

We not only tried one specific model for each one of the pieces, but we
also explored playing with spaces in parallel. With this approach, we had two
instances of R-VAE running in sync. While we sampled the latent space at a
specific point and decoded a rhythm using the first instance, we dynamically
changed the position of the playback head in the second instance and layered
a varying pattern that added variability to the first R-VAE instance output.
Another parallel approach was setting up two low frequency oscillators to the
playback head position in one instance—so that the position of the playback
head was changing gradually in a controlled manner—and a second layer was
added on top.

In terms of the sound output, we first tried triggering samples from the MIDI
output of R-VAE, but we soon realized we could take advantage of the realtime
possibilities of sound synthesis to add expressivity to the rhythmic patterns. As a
result, we chose to couple R-VAE with the Dave Smith Instruments Tempest, an
analog drum synthesizer that exposes many of its synthesis parameters in a com-
plex gestural interface. Having access to control the actual generation of sound
allowed us not to depend on constantly changing the latent space sampling point
to add variability to the patterns, but to control the sound generation in realtime
(e.g., by changing the oscillator frequencies, lowpass or highpass filter frequen-
cies and resonance, amplitude and filter envelopes, etc.) A second instrument we
used to trigger sound was the Applied Acoustic Systems Chromaphone, a phys-
ical modeling synthesizer built around the combination of acoustic resonators.
The physical modeling approach to sound generation allowed us to generate a
wide range of sounds due to user-chosen signal flows and different resonator
types that contributed an additional layer of expressivity to drum sounds.

Due to the intrinsic nature of R-VAE, and our interest in exploring a specific
set of rhythms, our compositions were essentially rhythmic pieces. We decided
Clastic Music would have an increase in tempo throughout the album, where
the first tracks would start pretty slow, and the tempo would gradually increase
until reaching a faster tempo at the end. However, we took advantage of the
tempo octave features of the rhythms we were modeling, and we modulated the
perceived tempo throughout the tracks. This is especially noticeable in the first
pieces—where there are zones in 85 bpm and others at 170 bpm—and in the last
one—with tempo zones perceived at 160 bpm and others at 80 bpm.

Clastic Music can be listened at https://bit.ly/3yo6rm1

4.4 Performance

To examine further the use of R-VAE in a musical performance context, we pre-
miered Clastic Music live at the 21st International Festival for Digital Creativity
and Electronic Music, MUTEK. For this performance context, instead of inter-
acting with the latent space using a computer trackpad or mouse, we opted to

https://bit.ly/3yo6rm1
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Fig. 8. The mapping of parameters to control R-VAE and the sound synthesis gener-
ation was implemented through three interfaces. The R-VAE decoding from the latent
space was controlled through a Kaoss Pad XY grid, potentiometers, and buttons (the
device in the middle). The interface of a Tempest synthesizer was used to control the
drum sound parameters. Knobs and sliders in a third controller were mapped to the
parameters of a physical model synthesizer.

map the R-VAE parameters to a KORG Kaoss Pad KP3. This device has a big
touchpad that can be used as a MIDI controller, and we mapped it to the latent
space in R-VAE. We also mapped the controller’s slide potentiometer to the R-
VAE threshold, three buttons to mute or unmute the main drum instruments,
and a rotary potentiometer to the overall amplitude level. The knobs and mod-
ulation wheel of a second MIDI controller were used to control parameters of
physical models in Chromaphone, and the synthesis parameters of drum sounds
were controlled directly with the Tempest interface. In Figure 8 we show the
configuration we used to perform with R-VAE on stage.

This way of interacting with the R-VAE and the sound synthesis engines gave
us a different perspective on how to play with the full system. That is, instead
of tweaking one thing at a time, as you would do with a mouse or trackpad, we
were able to do several things at the same time. For example, we were able to
interpolate between points in the space while changing the threshold or changing
the amplitude envelopes of drum sounds. This was a big change because it gave
us the power of not only having a simple two-dimensional mapping from the
performance to the latent space, but a three-dimensional one, where we could also
control the complexity of the patterns retrieved. Even further, considering the
control we had on the sound generation, we ended up with a multi-dimensional
mapping, where we were able to control the sequences of patterns to be played
as well as the sonic characteristics of the drum sounds.

Having a tactile interface also provided us with a degree of proprioceptive
feedback that was missing when interacting with the computer through the track-
pad. Long rehearsals with pre-made models, the new type of feedback, and the
fact that live performance is different from composition or exploration mode
when in the studio, resulted in not needing to look at the dynamic visualizer.
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Snippets of the MUTEK live performance can be accessed at https://youtu
.be/0y69ANhUlvM?list=PL2ySFw5-RHDaA4mKaCeGAzl2Kh uklSoR

5 Conclusions and Future work

In this article, we have presented R-VAE, a system designed for the modeling
and exploration of latent spaces learned from rhythms encoded in MIDI clips.
We investigated the viability of the system by encoding rhythms from music
genres such as footwork, gqom, and trap, and using the models in real-life musical
production and live performance.

We empirically confirmed our system was able to encode rhythms from those
genres and learn models with small training datasets. As a result, the main
contributions of this research are twofold: (i) a machine learning device for the
generation of rhythms that incorporates a data representation that broadens
the type of rhythms that can be encoded towards modern music genres, and
(ii) a dynamic visualizer that displays all rhythmic patterns in the latent space
at once. Although the first contribution could be seen as a modest technical
extension to previous implementations, we think it entails a great musical con-
tribution since, for the first time in the modeling of rhythms using VAEs, we
can now encode rhythms in compound meter, thus reducing the biases (e.g.,
toward particular genres and cultures) produced by data representations that
only encode certain types of rhythms. In regards to the second contribution,
our visualization advances research in latent spaces for music by moving beyond
conventional mapping toward a more integrated visual expression of the sonic
material.

When experimenting with data selection and model training, we found that
the system was able to learn useful and playable models with as low as one dozen
MIDI clips. However, this approach is not without problems. If the learning
process overfits the training datapoints, the model may only retrieve from the
latent space the same original examples. An undertrained model, on the contrary,
may not converge to a meaningful representation. As such, decoded rhythms
will not bear resemblance to the training set. Another drawback of using small
training sets is that the topology of the learned space may be uneven. That is,
the space exhibits zones where a single pattern is decoded and transitions to
adjacent zones are abrupt. On the contrary, when we increased the number of
clips to a few dozen, the learned latent spaces were richer and exhibited a more
even topology, helping the performer to create smoother interpolations when
moving the playback head between rhythms in different zones of the performance
space. Even if not perfect, individually crafted models from smaller datasets
could prove to be useful and inspiring to the creative practitioner. The amount
of data needed to generate creatively interesting models will vary with context
and intention, but small data may be more suited to generate custom models
that are good for exploring a specific idea or creative concept.

We investigated the expressive possibilities of generating and playing with
rhythmic latent spaces learned from data in real-life musical production. We ob-

https://youtu.be/0y69ANhUlvM?list=PL2ySFw5-RHDaA4mKaCeGAzl2Kh_uklSoR
https://youtu.be/0y69ANhUlvM?list=PL2ySFw5-RHDaA4mKaCeGAzl2Kh_uklSoR
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served that the dynamic visualizer captures nicely how the different patterns are
distributed in the latent space, and provides much-needed visual feedback when
interacting with the models. Since patterns are synced in time, similar, neigh-
boring zones flash synchronously, exposing previously hidden rhythmic clusters
in the space. On the contrary, adjacent zones with elements in different meter
flash asynchronously, giving the performer a natural visual cue to discriminate
these zones and their boundaries.

We investigated the viability of R-VAE in live performance contexts at the
MUTEK International Festival of Digital Creativity and Electronic Music and
the Network Music Festival 2020. We found that additional R-VAE controls
such as threshold are very important in live contexts because it adds another
dimension to control how the rhythmic patterns are sampled from the latent
space. In other words, by limiting the number of onsets retrieved from the latent
space at any given time, the threshold parameter helps the performer control
the complexity of the decoded rhythmic patterns. As a result, just using the
threshold in a single point of the latent space can lead to many interesting
rhythmic variations and perceptually different patterns.

Interacting and performing with latent spaces encoding rhythms pose ex-
cellent questions, from both a computational and musical point of view. For
example, how can we characterize the latent space in terms of the smoothness
of the interpolations? What is a good metric to measure the richness of the
encoded space? Musical performance contains some pertinent differences from
other fields unaddressed by current technical literature. For example, when mea-
suring rhythmic similarity, the apparently small change of moving a few onsets
from a 16th grid to its closest triplets is small in terms of edit distance, but it
can have a large perceptual impact. Furthermore, there are some instrumental
hierarchies when working with rhythms. For example, changing a few hi-hats in a
rhythmic sequence is likely to have a subtler perceptual influence than changing
a drum kick pattern.

Although the design and usage of R-VAE described in this paper have been
informed by the professional experience of the research team, including substan-
tial professional music performance work by the first author using the system,
further development will also benefit from evaluation and use by others. As a
result, future planned work includes a user study where professional beat makers
outside the research team interact with the system. We aim to gain insights into
the usefulness of the visualizer, the perceived qualities of models trained from
very small datasets, and the adequacy of R-VAE in different musical contexts
(i.e., improvisation, performance, and production). We expect this study will
uncover problems and design opportunities, and provide insights to inform the
design process and further research in this area.

Our experience with R-VAE has reinforced the idea that a system for the
exploration of latent spaces of musical rhythms is worth pursuing further. For
example, systems like this could be also used for browsing through libraries of
rhythms, common in contemporary music production, or for the generation of
non-linear music soundtracks, common in videogames. Finally, the visualizer
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presented in this work was implemented for models created with a VAE network
but its design is easily generalizable and has the potential to be used with other
network architectures.
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