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Abstract. In this paper we use a recently proposed framework called
Deep Musical Information Dynamics (DMID) to explore information con-
tents of deep neural models of music by applying bit-rate reduction to
latent representations that are used to generate the musical surface. Our
approach is partially motivated by rate-distortion theories of human cog-
nition that claim that in order to deal with the complexity of sensory
information some information must be lost or discarded in the act of
perception. When lossy encoding is done over time, this may alter the
anticipations that are formed within and across voices at different levels
of representation of the musical structure. Moreover, we postulate that
a goal of a musical machine learning system, and possibly human mu-
sical learning system, is learning a latent representation that “explains
out” most of the Information Dynamics of the Musical surface. This as-
sumption is explored in DMID through several experiments on symbolic
(MIDI) and acoustic (spectral) music representations using a Variational
Auto Encoding scheme with an additional bit-rate reduction step. Our
results suggest that higher mutual information can be found between la-
tent representations encoded with reduced rates. The DMID framework
is significant for studies of computational creative music systems since it
allows exploration of information relations in latent and surface levels of
musical data in a quantifiable and computationally tractable manner.

Dedicated to the memory of Naftali Tishby (1952–2021)

1 Introduction

Musical Information Dynamics is a field in music analysis that is inspired by
theories of musical anticipation (Meyer, 1956; Huron, 2006), which deals with
quantifying the amount of information passing over time between the past and
future in a musical signal (Dubnov, 2006; Abdallah & Plumbley, 2009; Marcus
T. Pearce, 2012). Modeling and capturing information in a musical signal heav-
ily depends on the representation of the data. Recently, generative deep neural
models have become the primary tools for representation learning in multiple
domains. The compelling idea of machine learning is that various aspects of
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modeling data from the world, that include embeddings, representation, and en-
codings are captured using vector spaces that beautifully map structures into
mathematical space. The powerful idea of generative modeling is that in order
to effectively represent the world, the learning system needs to be able to effec-
tively “imagine” it. Mathematically, this means that the goal of learning is to be
able to approximately reproduce or simulate the statistics of the world from an
internal representation that the learning system constructs. Finding such rep-
resentation entails being in a state of homeostasis between the system and the
outside environment, which in our cases comprises the external world of music
and the internal minds of the musicians themselves, be it listeners or composers.

When time is involved, ideas such as Friston’s free-energy applied to pre-
dictive coding (Friston, 2012) and Schmidhuber’s world models (Schmidhuber,
2010) that use Reinforcement Learning (RL) to capture compressed spatial and
temporal representation of the environment come to mind. We discuss these
ideas briefly in the conclusion. It might be valuable to point out that the main
difference between these approaches and the work presented here is that we do
not assume an active learning or active inference scenario. The current paper
focuses on representation learning aspects of a musical model, which amounts
to specifying the goals for optimizing model parameters that reduce the uncer-
tainty about music by forming the best latent or posterior beliefs at different
levels of reduction. Extensions to active inference or planning of optimal musical
actions to validate or violate musical anticipation in the process of composition
or improvisation are possible directions for future research.

In order to learn generative musical models we desire a representation that
comprises of multiple levels of structure that can “explain out” most of the mu-
sic information dynamics. We employ deep neural networks as models of musical
structure and use them to explore the temporal relations at various levels and
at different fidelity of encoding. The novel framework called Deep Musical In-
formation Dynamics (DMID)(Dubnov, 2020) considers music as a complex phe-
nomenon comprising of parallel temporal representations at different fidelities
of encoding, organized in time. Our analysis juxtaposes a reduced information
(low bit-rate encoding) of the latent variables with high rate representation of
the musical surface data, and applies various statistical test to it with qualitative
observations. Motivated by rate-distortion theories of human cognition(R.Sims,
2016), DMID provides a framework for exploring possible relations between la-
tent anticipations existing in the listener’s mind and information dynamics of
the actual musical surface. Even if this approach does not claim to represent
the process of how a composer actually writes music, it can serve as a useful
conceptual model for analysis of musical structures in relation to creative and
listening thought processes.

Technically speaking, earlier studies of Musical Information Dynamics used
the concept of Information Rate (IR) to estimate the mutual information be-
tween past and future of a musical signal (Dubnov, Assayag, & Cont, 2011).
Generative models that maximize IR were shown to provide good results in
machine improvisation systems (Pasquier, Eigenfeldt, Bown, & Dubnov, 2017).
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Since music is constantly changing, the ability to capture structure in time de-
pends on the way similarity is computed and predictions or anticipations are
formed over time. For example, two musical measures improvised over the same
sequence of chords often have different notes because of voicing considerations,
rhythm changes, embellishments and more. Accordingly, finding repetitions in
time require representations that are robust to statistical variations in the signal.
DMID analysis offers a combined approach to learning representation and mea-
suring the predictive information at different structural representation levels.
Our goal is to show the importance of considering the trade-off between encod-
ing complexity of musical structures and their predictive properties at different
levels of musical representation (latent versus surface).

In the paper, the DMID framework is demonstrated by conducting experi-
ments with several different music representations. For symbolic (MIDI) data,
we conduct two experiments: monophonic representation to study counterpoint
relations between voices, and a polyphonic (piano roll) case to study temporal
structure at different reductions. The structural analysis is repeated for an au-
dio recording using a spectral signal representation. In all cases, the surface is
encoded using Variational Inference models, each adapted for the specific repre-
sentation case. The variational encoding framework allows us to first establish
a high-rate representation of the musical surface, which is then reduced using a
bit-allocation method into a second stream of low rate encoding. This reduction
serves to investigate the trade-off between fidelity and quality of music repre-
sentation and its predictive properties. In a sense, the reduced representation
can be considered as a conceptual or mental abstraction of music that might be
needed to capture longer-term structural similarities in music that cannot be per-
ceived when looking or listening to music in full details. To allow this combined
representation-prediction trade-off, the combined loss defined in DMID includes
both the information rate in terms of time evolution for each representation
stream, and the accuracy of the encoding of the musical surface by that stream.
Both the temporal and cross-stream relations are measured in terms of mutual
information within and across the high and low rate representations. Addition-
ally, we consider if reducing the fidelity of musical representation is manifested
across voices in a polyphonic musical piece. Although this case is not directly
captured by the DMID model that is defined for a single musical stream repre-
sentated in parallel at different rates, it is reasonable to assume that relations
between multiple voices in the same musical piece might be also revealed differ-
ently subject to their reduced encoding. Accordingly, we conduct an additional
experiment using the DMID approach where we consider the case of a coun-
terpoint, where we explore the mutual information between voices in the same
musical piece, examined at different reduced representation rates. Our findings
suggest that there is a mid-level representation that actually shows higher cor-
respondence between the voices compared to full-rate or very low-rate encoding.
The implications of our findings are discussed throughout the paper.

The structure of the paper is as follows: in section 2 we introduce the concept
of DMID. Section 3 deals with different methods to learn musical representation
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from data. In section 4 we discuss the core concept of reducing the representa-
tion encoding by using methods of lossy compression from information theory. In
section 5 we introduce the methods and techniques of mutual information esti-
mation. In section 6 we further extend the mutual information method for mea-
suring changes in information contents over time based on the Variable Markov
Oracle (VMO). In section 7 we report the experiments on monophonic and poly-
phonic midi and audio. Section 8 concludes the paper with a discussion of the
findings in the proposed DMID framework as a general approach to study of
creative musical systems.

1.1 Detailed description of the paper structure

Due to the size of the paper, we provide here a more detailed account of the paper
structure. This subsection can be considered as a sort of “Table of Contents”
for the paper. Readers interested in a particular topic might be able to navigate
the paper in a non-sequential manner, as we tried to provide cross-references
between sections to allow a non-linear reading. The contents of the papers can
be summarized as follows:

– Section 2 introduces the concept of latent predictive information, which is the
basis for analysis of temporal structure of the reduced or possible “mental”
abstract representations of music that emerges when some details of the
encoding are eliminated.

– In section 3 we propose the use of a Variational Inference method, namely the
Variational Auto Encoder (VAE), as our method of choice for representation
learning. For the monophonic case we use a hierarchical VAE that uses short
term temporal learning with Gated Recurrent Units (GRU) at a beat and tick
temporal levels. For polyphonic MIDI representation, we consider a piano-
roll representation that is cut into short-time simultaneous events (frames),
with multiple notes (multi-hot encoding) passed into a VAE, one frame in a
time. Similarly, we treat audio as short time audio frames analyzed in terms
of their frequency contents using the magnitudes of the Short Time Fourier
Transform (STFT), also known as a magnitude spectrogram.

– In section 4 we introduce the technique of optimal bit allocation based on
Rate-Distortion theory, where we operate under the assumption that the
encoding vectors learned in the previous representation learning step are
element-wise independent and obey multi-variate Gaussian statistics. This
is, of course, a gross simplification, but we use it for practical algorithmic
purposes to be able to choose what elements from the full-rate encoding
could be eliminated for a given encoding rate.

– In section 5 a method for estimating mutual information which captures
statistical dependencies between random variables averaged over multiple
realizations of these variables for an arbitrary statistical distribution, is in-
troduced. It is easiest to think about Mutual Information as a generalization
of a correlation measure, which effectively captures the same statistical de-
pendency for the case of Gaussian signal. In our DMID model, we estimate
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mutual information in two different settings – first between different rep-
resentation levels, i.e. between full and reduced rate representations, and
second, between past and future of each representation stream. Since the
statistics of our streams are complex and unknown, special techniques for
measuring such statistical relations are required. Accordingly, we introduce
first the so-called Mutual Information Neural Estimation (MINE) method
to estimate mutual information between different representation levels. We
later on use this method for studying also the mutual information between
voices in polyphonic music, at different representation levels.

– In section 6 we introduce the concept of predictive information and de-
scribe an approximate predictive information estimator based on the Vari-
able Markov Oracle (VMO). The advantage of VMO over MINE is that it
allows the estimation of instantaneous values of mutual information over
time, while MINE requires averaging over the whole signal. VMO uses a
“trick” where a variable length string compression algorithm is used as a
proxy for an entropy measure, characterising the instantaneous surprisal or
uncertainty of a signal in terms of encoding the present by finding approxi-
mate repetitions in the signal past. Loosely speaking, the same way STFT
allows short time-frequency analysis by compromising on the ideal notion
of pure frequency as something that exists from an infinite past to an infi-
nite future, VMO compromises on the ideal notion of mutual information as
something that is averaged over full statistics of a signal, and approximates
it in dynamic manner by considering approximate compression of the present
based only on its past. This method of time-changing predictive information
is called Information Rate, which is later applied to the analysis of predictive
structure of a complete musical piece at different representation levels.

– Finally, in section 7 we report the experiments on our three types of musical
situations: 1.) Monophonic Symbolic Music, 2.) Polyphonic Symbolic Music,
and 3.) Audio Recording of Polyphonic Music. In section 8 the representation-
prediction trade-offs are summarized into a joint objective that combines re-
duced latent encoding with predictive information criteria into a single math-
ematical expression. This learning objective is further discussed in terms of
the differences between learning generative representation and active infer-
ence, relating it to creativity and the role DMID representation plays in
finding the right intrinsic motivation and empowerment for a musical agent.

– Some mathematical and implementation details related to the experimental
results are deferred to the Appendix.

2 Deep Musical Information Dynamics (DMID)

The materials of this section are largely based on an initial paper(Dubnov, 2020)
that provides the underlying motivation for proposing a DMID model. The un-
derlying creative cognition assumption is that the imagination of the composer,
improviser, or listener is an active process that involves encoding the current
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Fig. 1: Graph of statistical dependencies between the different model variables.
The letter “e” represents an embedding created by encoding. Later on we will use
VAE as our encoding method. Complexity of the embedding will be controlled
by bit-rate allocation.

incoming musical stimulus and the anticipation of its future. In information pro-
cessing terms, encoding deals with extracting salient features that allow efficient
representation of the signal, while a second process is trying to predict the evo-
lution of those features over time. While the first process often deals with the
recognition of isolated sound events, it is the second aspect of prediction that is
commonly recognized as the underlying mechanism for anticipations that allow
for the creation of surprise, validation, or violation of expectation and building
of tensions and resolutions in a musical narrative.

In order to allow a quantitative approach to the analysis of what’s going on in
the “musical mind”(Assayag, 1999), we propose an information theoretic model
for the relation between four factors: the signal past X, the signal present Y ,
and their internal or mental representation in terms of past and present latent
variables Z and T , respectively. This highly simplified model assumes a set of
Markov chain relations that specify the so-called Data Processing Inequality
relations (Cover & Thomas, 1991). A set of variables A,B,C obeys a Markov
chain relation if we have P (A,B,C) = P (A|B)P (B|C)P (C), or in other words,
if the conditional distribution of A depends only on B while being conditionally
independently of C. The relationship between the aforementioned factors X, Y ,
Z, and T is illustrated in Figure 1, with Markov relations between the past of
the signal X that is encoded into a latent representation Z, the future of the
signal Y that depends on its past X, and its approximation by decoding from
a latent representation T that is predicted from past latent representation Z.
The significance of Markov relation is that it specifies the model assumption
about how aspects of musical information evolve and depend on each other. The
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underlying assumption in latent models is that the data we observe is generated
by some hidden underlying factor, and the goal of the learning system is to find
the best interpretation or understanding of the data we observe by “a-posterior”
finding the best latent explanation or deep representation. To rephrase our latent
representation assumptions in terms of Markov relations, we can summarize
the goal of our model as finding a hidden Z that is, mathematically speaking,
“transmitted” over a noisy channel that renders it into X, which in turn is
finally decoded into Y . In other words, the triplet X,Y, Z obeys Markov relation
p(X,Y, Z) = p(Y |X)p(X|Z)p(Z).

Using the Markov relation Z−X−Y , we can try to formulate a mathematical
expression for the goals underlying the learning process of such a music system
(Elliott, 1993). Our expression for the optimization goal comprises a combination
of factors - simplicity of representation versus its prediction ability. Accordingly,
we are looking for a representation that minimizes the discrepancy, or statistical
difference, between signal prediction using complete information about the past
X, versus its prediction capability by using a simplified encoding of the past
Z. The overall quality of such error is averaged over all possible encoding pairs
X,Z of the musical surface and its latent code, respectively.

〈DKL(p(Y |X)||p(Y |Z))〉p(X,Z) = I(X,Y |Z) = I(X,Y )− I(Z, Y ) (1)

In our notation, DKL(·, ·) is the Kullback-Liebler (KL) divergence between
different distributions, and I(·, ·) is the mutual information between their ran-
dom variables. The mathematical definitions and proof of these relations is pro-
vided in the Appendix. Since I(X,Y ) are independent Z, minimizing the KL
divergence happens when I(Z, Y ) is maximized, with zero KL obtained when
I(Z, Y ) = I(X,Y ). In other words, we postulate that a goal of a musical ma-
chine learning system, and possibly human musical learning systems, is learning
a latent representation Z that “explains out” most of the Musical Information
Dynamics I(X,Y ). This principle is expressed as minimization of I(X,Y |Z). i.e.
finding a latent Z so that there will be very little remaining information passing
between the past X and the present Y of the musical surface itself.

To complete our postulate, some additional constraints on Z need to be
specified, since if Z = X, this condition is trivially satisfied. Accordingly, we add
constraints that require that the latent variable representation is as compact or
as simple as possible. In the process of VAE learning, the latent representation
is simplified by bringing it to be as close to a Gaussian uncorrelated noise as
possible1. Additionally we introduce lossy compression of Z for a pre-trained
VAE using a bit-allocation procedure. We term this principle of minimization
in equation 1 DMID minimization principle, and investigate it here for different
type of musical data, with their different respective VAEs, and using different
reduction levels.

1 This is the ELBO minimization principle, to be discuss in the next section.
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2.1 Adding simplicity requirement of the latent representation

The above formulation says that we need to be looking for some meaningful
Z, but we still do not know what such Z looks like, so minimizing KL could
be trivially satisfied by taking Z = X. To avoid such a trivial solution, we
add a constraint on Z requiring it to be the most compact or simplest latent
“explanation” that is derived from X. In information theoretical terms, we can
write this criteria as the minimization of I(X,Z). In a sense, we look for the
least amount of bits of information about X to be contained in Z. Later on we
will actually need a third parameter that prevents I(X,Z) from going to zero.
This can be achieved by adding a fidelity requirement or bound on distortion
between X and Z, that will be denoted as D(X,Z). It is important to note that
this distortion D is not same as a KL-divergence, but is rather some physically
motivated distortion, such as Mean Square Error (MSE) or some other distortion
measure between the “compressed” X, as expressed by Z, and the original X.
For the moment, we will ignore this fidelity constraint and consider only the
first competing relations between maximizing I(Z, Y ) and minimizing I(Z,X).
Combining the two goals, we arrive at the target function for our learning system

max
P (Z|X)

{I(Z, Y )− λI(X,Z)} (2)

This formulation bears close resemblance to the idea of the Information Bot-
tleneck (IB) (Tishby & Zaslavsky, 2015). The formulation of IB is to say that
a learning system tries to find the most compact representation of X that still
provides most information about a different variable Y . It should be noted that
IB does not allow an Auto-Encoding like unsupervised representation learning,
which will be separately handled through VAE encoding. Accordingly, predictive
IB looks at the next Y that is different from the reconstruction of X itself. In the
following we will combine the predictive IB with the unsupervised representation
learning of X.

2.2 Three factors with two competing criteria

To summarize, we have the following two criteria that combine competing goals
for three factors I(X,Z), I(Y, Z) and D(X,Z)

– finding the most compact representation of present X that is most informa-
tive about the future Y (i.e. time information).

– finding the most compact representation of X from which X can be recovered
with minimal distortion D(X,Z) (i.e. reconstruction qualify).

We identify the first criteria as time information and the second with repre-
sentation. In future sections these the two criteria are combined into one goal,
using VAE for representation learning and VMO for the temporal modeling. Be-
fore going into this discussion, we need to address one additional aspect that is
particular to DMID, which is the amount of predictive information present in
the latent codes themselves.
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2.3 Latent Predictive Information

An important goal of representation learning that stems from the DMID min-
imization principle is maximizing the amount of information passing between
the encoded past embedding Z and the next musical surface Y . Using the sec-
ond set of Markov relations shown in Figure 1, we relate temporal informa-
tion between the latent variables Z and T themselves. Accordingly, we express
I(Z, Y ) = I(Z, T )− I(Z, T |Y ) as the ability to predict the future of the musical
surface Y from past embedding Z, relative to predictive information in the latent
embeddings themselves. From these Markov relations we see that the amount
of information that past embedding Z is carrying about the future surface Y is
less then the amount of information carried between the past and future of the
embeddings Z and T , respectively. The term I(Z, T ) can be considered as latent
predictive information, corresponding to some sort of a reduced “imaginary” or
abstract musical anticipation.

Ignoring I(Z, T |Y ) (or assuming it is zero) means that hearing the next
musical frame Y causes the “internal” representations of the past and the present
to be independent. In such a case the expectations I(Z, Y ) from the reduced
representation of the past Z towards the present sound Y are the same as the
expectation of the actual sound Y , so that listening to the sound itself does not
add any surprise. This creates an exceptional situation where a computer system
that operates by maximization of the information rate (IR) in the latent states
sequence I(Z, T ) alone is maximizing the predictive ability of the model, and no
additional information or surprise is contained in the sound being produced next.
Musically speaking this excludes any variations in terms of expressive inflection
or sound performance aspects, if we consider here the acoustic interpretation. In
the score interpretation, the surface aspects might refer to melodic and texture
details, as contrasted with some underlying reduced musical structure such as
prolongations or harmonic or metric rules.

This discussion points to the important difference between latent encoding
and surface detail, which creates an additional surprisal factor I(Z, T |Y ) =
I(Z, T ) − I(Z, Y ) that might be important for various musical situations. In
other words, the total musical effect is a combination of the anticipation error
of a reduced latent process and the additional information in the next realiza-
tion of the musical surface. Both factors form the basis for the musical tension
that emerges in the listening process and are factors that can be deliberately
established during the composition design phase.

In other words, the difference between information contained in imagining
the continuation of a reduced musical representation in terms of some latent
variables, versus the actual realization of that next musical surface, is possibly
an important aspect in the process of composition or listening.

3 Variational Inference Models for Music

The question of how to encode music in a latent space is a burgeoning research
topic in the field of machine learning for computer music. In this paper we



10 Shlomo Dubnov et al.

apply the Variational Autoencoder (VAE) (Kingma & Welling, 2013) to map
the explicit music surfaces into the latent variables with higher structure. An
autoencoder is a structure that contains an encoder and a decoder. When used
in the deep learning field, each of them is composed of some types of neural
networks. During the training process, an input is encoded into a latent vector,
also known as an embedding, and an output is then decoded from the same
latent vector. The goal of training the autoencoder is to make the input and
output as similar as possible, while trying to obtain an embedding that has
some desired properties, such as dimensional reduction, sparseness and so on.
Broadly speaking, autoencoders belong to the category of unsupervised learning
methods, since their goal is to reveal structure that exists in the data rather
then classify it.

Unlike standard autoencoders that translate the data into a more desirable
representation, VAE explicitly constrains the latent variables Z so that they
should be random variables distributed according to some prior p(z). The input
X and latent code Z can then be seen as random variables Z ∼ p(Z), X ∼
p(X|Z). The VAE consists of an encoder probability qλ(Z|X), which approx-
imates the posterior probability p(Z|X), and a decoder probability pθ(X|Z),
which parameterizes the likelihood p(X|Z). In practice, the approximate pos-
terior and likelihood distributions are parameterized by weights of connections
between neurons in artificial neural networks. Posterior inference is done by min-
imizing the KL divergence between the encoder and the true posterior. It can be
proved that this optimization problem is the same as maximizing the evidence
lower bound (ELBO):

ELBO = E[log pθ(X|Z)]−KL(qλ(Z|X)||p(Z)) ≤ log p(X) (3)

Another important insight about VAE is that it is a generative model, where
the latent variables Z are used to “drive” the decoder into producing novel
samples of the data X. In a statistical sense, VAE is used to learn the distribution
P (X), rather then to simply encode X.

In this paper, we will use VAE to analyze three formats of music: (1) poly-
phonic music, (2) monophonic counterpoint music, and (3) music waveform in
recorded or synthesized audio. Different formats of music require different struc-
tures of neural networks to encode and decode.

3.1 Hierarchical VAE for Monophonic Music

Many works (Chen, Zhang, Dubnov, Xia, & Li, 2019; Roberts, Engel, Raffel,
Hawthorne, & Eck, 2018; Pati, Lerch, & Hadjeres, 2019; Chen, Wang, Berg-
Kirkpatrick, & Dubnov, 2020; Chen, 2021) explore the encoding method of
monophonic music that contains one note at a time. In this paper, we use a
hierarchical VAE model (Pati et al., 2019; Chen, Xia, & Dubnov, 2020) for the
encoding and decoding of monophonic music. As shown in Figure 2, this method
consists of pre-processing a series of musical notes into a token sequence, with
three types of tokens:
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Fig. 2: The network architecture of monophonic music Variational Autoencoder.

– Pitch: encoding what pitch onset (from C0 to G10) this time step has.
– Hold: encoding that indicates if this time step continues with the last pitch.
– Rest: encoding that indicates if this time step is a rest (silence).

Next we feed the tokenized data into our VAE model. The encoder is com-
posed of an embedding layer, two bidirectional-GRU recurrent layers, and a lin-
ear layer for constructing the mean and the logarithmic standard deviation of the
latent distribution parameters, in accordance to the common training paradigm
of VAEs. The decoder has a hierarchical structure with two sub-decoders. The
first is a beat sub-decoder that extracts the latent variable from the encoder into
a short hidden state sequence. Every hidden state is analogous to single beat in
music. The second tick sub-decoder then disassembles each beat’s hidden state
into tick sequence in time, which consists of the pitch, hold, and rest tokens. Both
sub-decoders comprise of GRU layers and several linear layers. This hierarchical
decoder is considered to be a representation of the structural prior in the VAE
model, where the beat sub-decoder first outputs some large note groups, and the
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tick sub-decoder further outputs each note by decoding these groups. By train-
ing the model, the parameters of the neural networks are tuned so as to optimize
the efficiency and accuracy of the decoding. The output of the tick sub-decoder
is regarded as the final output, with the reconstruction loss function being the
multi-cross entropy between the input tokens and the output predictive tokens.
Finally, the complete VAE training loss function consists of the reconstruction
loss and the KL divergence loss between the latent state distribution and the
assumed prior.

As depicted in Figure 2, a sequence of music melody (e.g. one or two music
measures) is tokenized into a sequence of integers. In the example of Figure 2, the
numbers 0-127 represent the pitch onset tokens from C0 to G10. The number 128
denotes the hold token, and 129 (nonexistent in the Figure 2) denotes the rest
token. Then, this melodic sequence is sent into an embedding layer by converting
129 numbers into latent embeddings. This embedding sequence is fed into two
bidirectional-GRU layers and output the final hidden state vector. The last part
of the encoder is a linear layer (or two linear layers) to map the final hidden
state vector into the mean and the logarithmic standard deviation of the latent
distribution parameters. The latent variable z is sampled from this distribution.

In the decoder, the first beat sub-decoder is composed of three linear layers
and one Beat GRU layer. As shown in Figure 2, we use the Scaled Exponential
Linear Unit (SELU) as the activation function after the first linear layer in the
decoder and two entry linear layers in the beat sub-decoder:

SELU(x) =

{
λx, x > 0

λαex − λα, x ≤ 0
(4)

where α ≈ 1.673, λ ≈ 1.051. The latent variable z is fed into the first linear layer
and taken as the initial value of the Beat GRU. The Beat GRU outputs each
hidden state vector b1, b2, ..., bn as the initial state for each beat in the music
measure. Each beat state is further mapped into two types of hidden state h
and c. Then, the second tick sub-decoder utilizes each pair of (h, c) in a Tick
GRU. Each beat state pair (h, c) generates t tokens within the timeline, where
h is the initial value and c is the conditional value of the Tick GRU in each beat
state. The final output x is a discrete symbol in each time state, obtained by a
fully-connected layer to map the output of Tick GRU into a probability vector
and taking the argmax2 of it. The cross-entropy loss is computed between the
original ground truth (one-hot vector) and the probability vector to train the
VAE model.

In this paper, we use the number of beats n = 8, and the number of ticks
in each beat t = 6 to represent two monophonic music measure. The latent
dimensional size is 10, which we use to convert the melody tokens.

3.2 VAE for General Polyphonic Music

Finding a principled latent representation of polyphonic music is an open prob-
lem in music research, with several works proposing multi-track music encoding,

2 find the index where contains the maximum probability value.
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Fig. 3: An example of pianoroll. The x-axis is the timeline and the y-axis is the
pitch. Orange pieces denote the notes appearing within the timeline.

decoding and a combined toolbox (Z. Wang, Zhang, et al., 2020; Z. Wang, Chen,
et al., 2020; H. Dong, Chen, McAuley, & Berg-Kirkpatrick, 2020). In this pa-
per, we use a simple piano-roll format to construct a vanilla VAE model for
encoding and decoding polyphonic music. The piano-roll format for polyphonic
music consists of a matrix where the x-axis (row) corresponds to time step and
the y-axis (column) is the pitch map, with a binary value for each pitch class
denoting presence or lack of note activation at that time instance:

Pianoroll(t, p) = c ∈ {0, 1} (5)

Figure 3 shows a piano-roll example of polyphonic music.
As shown in Figure 4, our proposed polyphonic music VAE encoder sim-

ply consists of two linear layers. We first flattens the piano-roll matrix into a
sequence of length T × P (T is the total number of time steps, and P is the
total number of pitches). Each P -step group is a multi-hot vector for each time
step. We implement a linear layer to map the input sequence to an integrated
latent vector. This vector is similar to the final state output of the GRU layer
in the monophonic VAE architecture. Then, we implement another linear layer
to map the integrated latent vector into the mean and the standard deviation of
the latent VAE distribution. Similarly, the decoder comprises two linear layers
that map the latent variable back into an output piano-roll matrix. The recon-
struction loss function is the binary-cross entropy loss between the input matrix
and the output matrix. Following the standard VAE method, the total training
loss constitutes of the piano-roll reconstruction loss and a KL divergence loss
between the latent distribution and a Gaussian prior.

There are two reasons for us to use the linear layer to process the pianoroll
instead of recurrent layers or convolutional layers. First, different from mono-
phonic music, polyphonic music possibly contains more than one note in many
time steps. This requires us to predict the probability of every note in every
time step. In the monophonic VAE, the recurrent layers only process sequences
of length T , while in the polyphonic VAE, the sequence length is increased to
T × P , so the training speed would be extremely low and the GPU memory
cost would be unaffordable. As for the convolutional layers, it is hard for them
to process such a long sequence since they only contain a limited perceptive
field to capture each segment of the sequence. Second, if we directly process
the multi-hot pianoroll vectors into the model without flatting the pianoroll, the
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Fig. 4: The network architecture of polyphonic music Variational Autoencoder.

final output of each time step of the decoder is also a multi-hot vector. In that,
we need to implement another component to predict the number of notes in
each time step. This adds more parameters into the model in comparison to the
monophonic VAE architecture.

Therefore, using linear layers to compose the encoder and the decoder of the
polyphonic VAE is a trade-off and an easy-to-implement method. This allows
the implementation fo models using similar computing resource consumption
for both the monophonic and polyphonic VAE. In the experiments, we treat
the polyphonic music and the monophonic music as two cases with different
settings. The difference in VAE structure will not affect our findings. Currently,
the construction of an efficient polyphonic VAE is still a challenging topic in
research. Some works (Z. Wang, Zhang, et al., 2020; Z. Wang, Chen, et al., 2020)
propose different data and network structures to achieve a higher accuracy in
reconstructing the music from the latent variable. In the future work, we hope to
construct a more advanced structure to process polyphonic music using a VAE.
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3.3 VAE for Audio

The high dimensional and continuous nature of audio signals creates a challenge
for finding an efficient latent representation for music. Several works have uti-
lized VAE models for exploring audio representations, including VAE models for
finding disentangled audio representations(Luo, Agres, & Herremans, 2019) and
VAE models for modeling audio containing speech (Hsu, Zhang, & Glass, 2017).
Apart from VAE, simple convolutional models are used in different music tasks
such as music recommendation (Chen, Liang, Ma, & Gu, 2021) and source sep-
aration (Chen, Du, et al., 2021). In our experiments for audio representations,
we chose to use a convolutional VAE to map the short-time Fourier transform
(STFT) representation of audio into a lower dimensional latent representation.
The input audio signal is sampled at 22050Hz and then preprocessed using STFT
with a window length of 92 ms and a hop length of 12 ms. The spectrogram is
split into short, fixed-length time frames with duration 279 ms resulting in an
input representation with 1024 frequency bins and 24 time bins.

The encoder and decoder of our VAE have a symmetrical structure consist-
ing of convolutional layers and linear layers. Full details for the architecture
parameters are available in Appendix B. The encoder is constructed of five 2D
convolution layers with max pooling layers located after the third convolution
layer, and after the last convolution layer. The final layer is flattened and pro-
cessed through two linear layers to obtain a mean and a logarithmic variance.
From the mean and logarithmic variance, the latent variable is sampled from a
normal distribution. The decoder nearly mirrors the encoder architecture. The
latent variable is first passed through a linear layer to obtain the correct shape
when unflattened. Following are five 2D transpose convolution layers and two
upsampling layers to restore the shape of the spectrogram.

The reconstruction loss function is the mean-squared error between the input
and output spectrogram, and the whole VAE training loss is constituted by the
reconstruction loss and the KL divergence loss. Since mean-squared error does
not accurately portray perceptive audio reconstruction quality, the reconstruc-
tion quality of audio is evaluated using log spectral distortion between the two
power spectrograms S and Ŝ:

LSD =
1

T

T∑
t=1

√√√√ 1

N

N∑
i=1

(Sti − Ŝti)2 (6)

4 Reduced Representation

The idea of musical reduction is known from various theories of music analy-
sis, such as Schenkerian analysis (Marsden, 2010) and later generative grammar
approaches like GTTM(Lerdahl & Jackendoff, 1996). These theories consider
deeper musical structures, somewhat related to musical theory concept of Ursatz
that comprises a background abstract layer from which the musical foreground
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surface3 emerges. It should be noted that Ursatz is not really predictive and
has not been proven to represent music cognition, much like many of the for-
mal grammar theories that are still arguably non-representative of true human
cognitive faculties. Nevertheless, it can still considered as a prototype for music
reductionist analysis. The GTTM, which is derived from Schenkerian analysis, is
a generative model by definition, suggestive of another conceptual parallel to our
methods. Of course these techniques are very different from the methods devel-
oped in this paper and are brought here only for motivation purposes. As we will
observe later (section 7.1), both musical surface and highly compressed repre-
sentations contain little predictive power, while maximal predictability happens
in the mid-range of reduction quality. A different aspect of reduced representa-
tion that served as motivation, which is closer to aspects of human cognition is
the study of Rate–Distortion as a way of extracting useful or meaningful infor-
mation from noisy signals (R.Sims, 2016). The idea of reduced representation
also has been recently explored in the context of representation learning in deep
neural networks using a framework known as Information Bottleneck (Tishby &
Zaslavsky, 2015).

The special case of music is that the deeper background structure serves
not only to compress, but also to predict musical continuations, or in other
words, the concept of Ursatz introduces the idea that longer musical progres-
sions or temporal relations, which are hard to perceive on the surface, can be
more evidently revealed from the background. Accordingly, the question of re-
duction in music is closely related to the task of prediction. In deep learning
some attempts to consider predictive information through use of a bottleneck or
noisy representation in temporal models such as RNNs have recently appeared
in the literature(Alemi, 2019),(Z. Dong, Oktay, Poole, & Alemi, 2020) An im-
portant distinction between these works and the proposed framework is that we
are not introducing rate-limitation or adding noise to the latent codes during
the learning process, but rather we are applying bit-reduction to a pre-trained
encoder-decoder network in order to reduce the complexity of the latent rep-
resentation prior to decoding. This allows experimenting with various bit-rate
regimes without retraining the network each time. For this purpose we borrow
a technique of bit-allocation from Rate–Distortion theory of lossy information
processing. The reduced latent representation streams will be later subject to
predictive analysis to consider their temporal significance.

4.1 Bit-rate limited encoding

As mentioned above, in this study we consider a particular case of reduced repre-
sentation that is based on Rate–Distortion theory. Rate–Distortion theory offers
an optimal solution for finding the most compact (least rate) encoding for a given
limit on the distortion or reconstruction error. Equivalently, Distortion–Rate
finds the best encoding in terms of least distortion for a given rate. Algorithm
for optimal bit allocation according to the Rate–Distortion theory are so called

3 Musical surface is musical data that contains the actual notes and sounds.
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Fig. 5: Noisy channel between encoder and decoder

bit-allocation methods that we describe below. By using a rate-limited channel
between encoder and decoder of the VAE we are able to control the complexity
of the encodings using a bit-allocation algorithm. In our case, we use Rate as the
free parameter to find the least Distortion codes, under the assumption that la-
tent codes in VAE are distributed as multi-variate uncorrelated Gaussians. The
Rate–Distortion function that provides the lower limit on the achievable rate R
as function of the maximal allowed distortion level D, is given by

R(D) =

{
1
2 log2

σ2

D , if 0 ≤ D ≤ σ2

0, if D > σ2.
(7)

Where R is the rate, and D is the distortion value. This Rate–Distortion function
can be converted into a Distortion–Rate function D(R) = σ22−2R that gives the
lower limit on distortion D that is achievable for a given rate R. This ideal
lower limit (i.e. least distortion) can be efficiently achieved for a particular type
of signals that is known in communication theory as “multivariate Gaussian
channel”. We adopt this channel model for our experiments without further
justification. What is special about this type of channel is that an optimal bit-
reduction can be achieved by using the so called reverse water-filling algorithm
(Cover & Thomas, 2006). This algorithm starts with a predefined bit-rate R, and
successively allocates one bit at a time to the strongest component, repeating the
process until all bits in the bit-pool are exhausted. One should note that channels
(i.e. latent variables in our case) with variance less then allowed distortion, or
channels that run out of bits for a given rate, are given zero bits and thus are
eliminated from the transmission.

Schematic representation of the channel inclusion in the auto-encoder archi-
tecture is given by Figure 5. Encoding the latent components at a rate R changes
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the mean and variance of the VAE as follows (Berger, 1971)

Q(zd|ze) = Normal(µd, σ
2
d) (8)

µd = ze + 2−2R(µe − ze) (9)

σ2
d = 2−4R(22R − 1)σ2

e (10)

This process requires some explanation: for a given rate R we obtain the bit-rate
for each of the latent variable according to the reverse water-filling procedure.
This gives us different number of bits for each latent dimension, where the high
variance dimensions tend to grab the bits first, often leaving the weak (small
variance) latent variables with zero bits. Next we proceed by sampling a value
from the encoder distribution according to the original VAE mean and variance
parameters, µe and σ2

e . Then, using the rate R and the original mean and vari-
ance parameters for each latent variable, we derive a new mean and variance µd
and σ2

d. We use these probability parameters to sample a reduced bit-rate value
and use it as our new input to the decoder. One can see that latent variables
that are allocated zero bits need not be transmitted4, while channels allocated
a very high rate will transmit an (almost) unaltered value of the latent variable
that was sampled in the VAE encoder.

Depending on the specific experiment and data-type, the last softmax layer
needs to be processed to determine how it translates into specific notes or spec-
trogram segments. The details of each representation are discussed in the cor-
responding experimental section. The VAE-based noisy channel is common to
all cases, done during the encoding-decoding part prior to the final data recon-
struction step.

5 Estimating the Reduction Quality

In DMID framework we consider the effect of reduced representation on the
ability to capture the information in the musical surface represented by a full-rate
encoding. By changing the bitrate, we have a theoretical “knob” that changes the
fidelity of the representation for the current musical frame. In order to be able
to assess the effect of reduced representation across musical voices, or the effect
of past reduced representation Z on the future surface Y , we need to employ
other statistical methods to estimate the change in mutual information between
these variables.

It is important to note that when we talk about full-rate encoding, we still
refer to the encoding of the latent representation that can be decoded at accept-
able level of quality or precision to reconstruct the musical surface. In math-
ematical notation, we may write Zfull−rate = Encode(X) and Tfull−rate =

4 More precisely, the value that the decoder needs is mean value of that latent variable
that is independent of the particular instance being transmitted. This mean value
can be obtained a-priori and thus can be “hard coded” into the decoder ahead of
time, with no need to transmit it.
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Encode(Y ), such that the reconstructions X̂ = Decode(Zfull−rate) and Ŷ =
Decode(Tfull−rate) are sufficiently similar to the original X and Y . We assume
that the pre-trained VAE model actually accomplishes this level of encoding-
decoding quality, and then we proceed to reduce the rate of Z, making X̂ and
Ŷ less exact or further away from their original X and Y . Since we assume that
the VAE learning is done sufficiently well, in some of the discussion we might
refer to the representation of musical surface data X and Y as a full-rate encod-
ing, but it should be clear that all the analyses are done on the latent encoding
of musical data, and not on the musical surface itself, and in the case of mea-
suring predictive information by VMO, the analysis is performed on a discrete
(symbolized) version of that encoding, as explained in section 6.3.

5.1 Mutual Information Neural Estimation

Theoretically, computing the mutual information between two variables is a hard
problem. The computation is only tractable if two variables are discrete or if two
variables’ probability distributions are known. For the latent variables sampled
from a VAE, we cannot directly compute the mutual information since it is
intractable to marginalize the probabilities from the whole latent space.

Mutual Information Neural Estimation (MINE) is a framework that allows us
to use a neural network output to approximate the mutual information between
two variables. Suppose that we want to estimate the mutual information between
x and z, we first construct the joint datapoints (x1, z1), (x2, z2), ...., (xn, zn),
where (xi, zi) is the tuple we hypothesize these two variables are related. Then,
we create a new group of datapoints (x1, za1), (x2, za2), ...., (xn, zan), where (a1, a2, ..., an)
is a randomly shuffled index sequence from 1 to n. Next, we feed these two groups
of data points into a neural network Tθ to converge by a loss function:

L(θ) =
1

n

n∑
i=1

Tθ(xi, zi)− log(
1

n

n∑
i=1

eTθ(xi,zai )) (11)

where minimizing this loss is to find a tighter lower bound that can approxi-
mate the true mutual information, by Donsker-Varadhan representation of the
KL divergence (Donsker & Varadhan, 1983). Generally, the mutual information
estimation is done by finding a mapping between two sets of datapoints, so it
is a “point-wise” mutual information that is not easily applicable to time-series
or predictive information. In the following experiments, we will use MINE to to
analyze these latent variables in different cases.

5.2 Bit-Rate Reduction versus VMO Symbolization

It should be noted that in our experiment we apply two separate steps of infor-
mation reduction:

1. Bit-rate reduction using bit-allocation techniques applied to the latent en-
codings of the VAE.
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2. Symbolization step in VMO that is used for finding repetitions of variable
length

The symbolization step, which can be considered conceptually as something
similar to Vector Quantization, is needed for technical reasons, in order to use
FO that is a string matching method, to find repeated sub-sequences of various
length. To our best knowledge, there are no other existing method that per-
forms symbolization based on maximization of Information Rate5. In application
of MINE, no symbolization step is required. Estimating predictive information
using symbolization with variable memory oracle is the topic of the next section.

6 Predictive Information in Variable Memory Models

Predictive Information refers to a measure of mutual information between two
random variables, one representing the past and one representing the present (or
the future) of some random process. In our formulation, we have two or more
parallel streams of such random variables. One stream is the musical surface,
where predictive information I(X,Y ) is measured between two time instances
X and Y of the musical score or audio recording. We can also apply predic-
tive information to sequences of latent states, wanting to measure the amount
of information passed over time in the reduced representation stream I(Z, T )
between past Z and future T .

6.1 From Sound (or Musical Score) to Information

One of the difficulties in estimation of predictive information is that the mu-
tual information for the next MIDI measure or the next audio frame based on
its immediately preceding measure or audio frame carries too many details to
be able to see the large picture. Going from signal to symbols, or changing the
representation from a complex musical score to a smaller set of representative
symbols or tokens is a common practice in time series modeling. Moreover, from
the temporal modeling aspect of how the future depends on the past, which is a
standard Markov assumption for random processes, the fixed memory assump-
tion is too limited to be able to capture the long term dependencies that exist
in music. It is possible of course to capture temporal relations in sequences of
continuous measurement in real valued signals or series of feature vectors using
auto-regressive models such as Dynamic Texture Models based on Kalman filters
(Barrington, Chan, & Lanckriet, 2009), Deep Kalman, or Recurrent Neural Net-
work models with latent embedding (Fraccaro, Sønderby, Paquet, & Winther,
2016). In our work we pursue an alternative route of symbolization prior to infor-
mation modeling, or in other words, we turn the complex polyphonic midi or the
features extracted from an audio signal into continuous vectors first, and then

5 In other words, what we are seeking symbolic representations that are most informa-
tive in time and thus are best at “explaining out” the Latent Information Dynamics
of music
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group them into a finite set of representative labels or symbols to allow find-
ing the variable length motifs or sub-sequences of different durations. We know
effectively that music has a long memory and that phrases or structural musi-
cal elements extend beyond the immediate past. In order to take into account
partial repetitions that may occur in the musical piece, we explored the use of
Factor Oracle (FO) (Allauzen, Crochemore, & Raffinot, 1999), which constructs
an automaton-like structure that links forward positions along a sequence to find
its factors.

Note 1. The term “factor” is used in FO in a very specific manner to denote any
sub-sequence of the original sequence. Due to ambiguity of the term “factor” the
reader should not confuse this with the general use of the word in other parts of
this paper., which is a term used for sub-sequences.

For the sake of completeness, we will briefly describe the FO method below.
For a full account the reader is referred to (Dubnov et al., 2011). One should
note that in variable Markov Oracle (VMO) (C. Wang & Dubnov, 2014), which
is an extension of FO to real-valued sequences of vectors (time series), the sym-
bolization step is done during the sequential modeling by setting up a threshold
for similarity between the time series data. As such, VMO symbolization is done
by taking into account the predictive aspects of the discretized sequence, choos-
ing the best predictive version as measured by its Information Rate. We will
discuss this below, as finding the best symbolization is critical to capturing the
information dynamics of the musical data. To sum up the motivation behind use
of VMO, the following steps are outlined:

– Initial representation of music or audio as feature vectors or multi-hot midi
encoding as a piano-roll

– Latent embedding of the initial input representation using VAE
– Reduced representation of the latent vectors using bit-allocation
– symbolisation and long-term memory modeling using VMO

6.2 Factor Oracle model for repeated sequence discovery

An example of FO structure, in the format of VMO, for a sequence of labeled
states is shown in Figure 6. More examples and details for this structure is
demonstrated in (C. Wang & Dubnov, 2014). The meaning of the labels depends
on the type of data used to represent music, for instance labels can represent
clusters containing similar audio features, or clusters of similar complex note
combinations in a MIDI file. Finding the right set of labels for representation of
complex MIDI data or audio signal is one of the critical aspects of this analysis,
which will be described in the next section where we talk about estimation of
Music Information Dynamics.

Given a sequence of labels, forward links are used to retrieve any of the sub-
sequences from X. An oracle structure has two types of forward links; the first
is an internal forward link which is a pointer from state t − 1 to t labeled by
the symbol xt, denoted as δ(t− 1, xt) = t. The other forward link is an external
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Fig. 6: A VMO structure with symbolized signal {a, b, b, c, a, b, c, d, a, b, c}, upper
(normal) arrows represent forward links with labels for each frame and lower
(dashed) are suffix links. Values outside of each circle are the lrs value for each
state.

forward link which is a pointer from state t to t+ k labeled by xt+k with k > 1.
An external forward link δ(t, xt+k) = t+ k is created when

xt+1 6= xt+k

xt = xt+k−1

δ(t, xt+k) = ∅.

In other words, an external forward link is created between xt and xt+k when
the sequence of symbols {xt+k−1, xt+k} is first seen in X with xt and xt+k−1
sharing the same label. In our IR estimation, and in the machine improvisation
application, the forward links are not used and are provided here for the sake of
completeness being part of the Factor Oracle automaton6.

An oracle structure carries two kinds of links, forward links and suffix links.
A suffix link is a backward pointer that links state t to k with t > k, without a
label and is denoted by sfx[t] = k.

sfx[t] = k ⇐⇒ the longest repeated suffix of

{x1, x2, . . . , xt} is recognized in k.

Suffix links are used to find the longest repeated suffix in X. In order to track the
longest repeated suffix at each time index t, the length of the longest repeated
suffix at each state t is computed by the algorithm described in (Lefebvre, Lecroq,
& Alexandre, 2003) and is denoted by lrs[t]. The parameter lrs is part of the
on-line construction algorithm of the oracle automaton (Lefebvre et al., 2003).

6.3 Estimation of Music Information Dynamics using VMO

Variable Markov Oracle (VMO) is a machine improvisation method based on the
Factor Oracle (FO) string matching algorithm. The VMO suffix tree data struc-
ture allows for various media-data generation (C. Wang & Dubnov, 2014). In

6 The function of the forward links is retrieval of factors of X, searching from the
beginning of a string X following the forward links path
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order to operate on complex musical or audio features, as well as any other multi-
variate time series data, VMO quantizes a signal xT1 = x1, x2, . . . , xt, . . . , xT , into
a symbolic sequence sT1 = s1, s2, . . . , st, . . . , sT , over a finite alphabet s ∈ S. Re-
lating this to the deep information dynamics model, we denoteX = xpast = xT−11

and Y = xpresent = xT . The computation of Information Dynamics is done using
the Information Rate (IR) measure I(X,Y ) of mutual information between past
and present of the musical signal. The novelty of the current approach compared
to previous VMO application is that it is being applied for the first time to a
sequence of latent states from a machine learned representation instead of stan-
dard human-engineered features. Moreover, using the bit-rate reduction step, we
use VMO to estimate I(Z, T ) for a reduced representations.

IR is estimated by extending the FO algorithm to real-valued sequences,
which in our case are latent states from VAE, with similarity being accounted up
to a given threshold. Changing the threshold from low to high can be effectively
thought of as symbolization that is done at different quantization levels from
fine to coarse.

At each threshold value, a different oracle graph is estimated by the FO
algorithm. For each such oracle, a compression method of Compror (Compression
Oracle) algorithm C is used as an estimator of I(X,Y ) = H(Y ) − H(Y |X) ≈
C(Y ) − C(Y |X). Here the entropy H is substituted with string compression
algorithm C, and C(Y ) = log2(|S|) is taken as the number of encoding bits
for individual symbols over alphabet S, and C(Y |X) is the number of bits in a
block-wise encoding that recursively points to repeated sub-sequences (C. Wang
& Dubnov, 2015a).

As mentioned above, the essential step for symbolization in VMO is finding
a threshold value, θ, that effectively partitions the latent variables into discrete
categories. The threshold θ is used to determine if the incoming xt is similar to
one of the frames following the suffix link started at t − 1. VMO assigns two
frames, xi and xj , the same label si = sj ∈ Σ if ||xi − xj || ≤ θ. In (C. Wang &
Dubnov, 2015b), VMO was introduced as an efficient method for estimating IR.
At each bit-rate (which will be specified in section 7), we apply VMO analysis
to estimate the information dynamics of that representation. This gives us an
estimated value of I(Z, T ) at different bit-rates, as discussed in the experiments
section.

To summarize, VMO algorithm comprises of a combination of two innova-
tions:

– Extension of the FO algorithm that operates on discrete sequences with
precise matching to an approximate matching up to a given threshold

– Use of Compror to estimate the information rate for that threshold

By using an exhaustive search over possible threshold values, the one with higher
information rate is retained as the best representation. As mentioned in the intro-
duction, one of the advantages of using VMO for mutual information estimation
is that it allows instantaneous time-varying estimates of IR based on the local
information gain of encoding a signal based on linking it to its similar past. This
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differs from other methods of mutual information estimation like MINE that
averages over the whole signal.

6.4 Estimation of Latent-Predictive Information

In order to estimate the reconstruction quality of musical surface from past
encoding, we need to estimate the mutual information between past embedded
Z and the future musical surface Y , I(Z, Y ). For convenience, we will call this
Latent-Predictive Information, to distinguish it from Predictive Information that
is measured within the same data stream. So we want to measure the ability to
predict one stream of data, in our case the surface, from another stream of data,
in our case the past embedding. This notion of Latent-Predictive Information
bears some resemblance to notions of Transfer Entropy (Granger, 1969) that
is measuring the amount of directed (time-asymmetric) transfer of information
between two random processes, also related to notions of Granger Causality
(Schreiber, 2000).

In our method, during the first encoding step we already minimized a related
quality I(X,Z) (and I(Y, T ) as well) by training a VAE. This process of learning
the latent codes was done in the training step by optimization of instantaneous
representation quality. This encoding is further modified using bit-allocation,
reducing the information between the surface data and its latent encoding. This
embedding gives us two different random variables Z and Y (or X and T , respec-
tively). For practical purposes, in the experiments we consider Y = Zfull−rate,
and Z = Zlimited−rate by doing the two steps of VAE encoding, followed by
bit-rate reduction.

To summarize, the Deep Information Dynamics model introduced the con-
cept of predictive-reconstruction surprisal I(Z, T |Y ) = I(Z, T ) − I(Z, Y ) com-
prising of the difference between prediction quality of the next element in the
embedding space, as measured by IR of the sequence of latent variables, and the
reconstruction quality of the future musical surface from previous latent state. It
should be noted that in terms of mathematical definitions of mutual information,
both factors require averaging over complete set of latent and surface data val-
ues, resulting in a single number of summary statistic that is time independent.
We use MINE (Mutual Information Neural Estimation) (Belghazi et al., 2018)
for estimating I(Z, Y ) (or in practice I(Zfull−rate, Zlimited−rate). In contrast to
VMO, the MINE method averages over the whole set of data points in Z and
Y , resulting in a single number. Accordingly, the surprisal experiments reported
in the experimental section comprise two different types of analysis:

1. time varying IR profile showing predictive information of latent encodings
at different bit allocation rates

2. a constant number representing an average predictive quality of a future
surface frame from past bit-rate limited latent encoding

Since VMO and MINE are based on very different algorithms, the units of IR and
encoding MINE estimates are not compatible, so we analyze them separately.
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Fig. 7: The example of Bach Invention No.1. Notice that it only shows two bars,
so the terminating bar is not the true end.

7 Experiments

We apply the DMID framework to three music cases: (1) polyphonic music,
(2) monophonic counterpoint music, and (3) music waveforms from recorded or
synthesized audio. Specifically, in each case, we use the corresponding variational
autoencoder model to obtain the latent variables of musical pieces, and then use
bit-allocation to control the rate of information that can be transmitted. By
controlling the rate of the bit-allocation, we can get the latent variables that
contain different amounts of original information. Furthermore, we use VMO
and mutual information neural estimation (MINE) to analyze different relations
in time and across representation levels of these latent variables.

7.1 Monophonic and Two Voices Counterpoint Case

In this experiment we test the DMID formalism in two settings: same voice pre-
diction versus across voices prediction. An interesting aspect of using reduced
representations of musical surface is its ability to reveal relations between par-
allel voices, such as in the case of musical counterpoint. Each voice is separately
analyzed in terms of its own representation and prediction structure. Next, we
explore the question of whether reduced representations reveal latent structures
and relations between the two voices. The motivation for this experiment is rel-
atively simple – in many musical voice leading practices, the voices are related
through some latent aspect, such as belonging to the same harmony that extends
the structure further then immediate consonance/dissonance relations between
the parallel notes. Accordingly, we express whether higher levels of mutual in-
formation can be found between reduced representations rather than within the
surface itself, and whether the melodic logic of one voice is influenced by another
voice. This experiment, although in part deviating from the strict formalism of
DMID, is suggested as an additional insight into using bit-rate reduction to
reveal musical structure, both within and across voices.

In this experiment, we use the dataset of 14 two-part inventions composed
by Johann Sebastian Bach. The MIDI files are collected from the Complete Bach
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MIDI Index 7. All files are accurately quantized according to the original piano
scores at 120 BPM (beat per minute). In each invention, there are two voices
consisting of monophonic music. Therefore, we use the hierarchical VAE from
section 3.1 to encode and decode each voice of each invention. Figure 7 shows
the first two bars in Bach’s Invention No.1.

We split the dataset into 10 training pieces and 4 testing pieces. To augment
the data, we shift the key of each training invention into its neighbouring 8
tonalities (i.e., moving up four tonalities and moving down four tonalities). We
did not shift for all 12 tonalities to avoid the extreme high and low notes in the
shifted music pieces. As a result, 10827 bars (measures) are used for training and
1485 bars are used for testing. In terms of the choice of training hyperparame-
ters, we set the batch size to 128, learning rate to 1e-4 (with Adam Optimizer
(Kingma & Ba, 2015)), beat number to 8, and the tick number per beat to 6,
so the total number of time steps is 48 ( 1

3 corresponding to demisemiquaver to
correctly handle triplets). We use early stopping to find the best reconstruction
accuracy in the training set. The final trained model performs at 99.07% aver-
age reconstruction accuracy between the input tokens and the output tokens in
the testing set. This accuracy is the same as the state of the art performance
achieved in (Pati et al., 2019; Chen, Wang, et al., 2020).

After completing the initial encoding, we use bit-allocation to control the
rate of the information that is transmitted from the original latent variables to a
reduced representation stream. For each voice of every test invention, we obtain a
latent variable representing the voice melody of one bar. We set the bit-rate to be
10, 100, 1000, and 10000 to adjust the amount of information reduction relative
to the original latent variables. Then, we decode these allocated latent variables
back into a music surface, creating new reconstructed pieces. From Table 1,
we can see that with bit-allocation, latent variables lose different amounts of
information according to the bit-rate. When the rate is 10, the reconstruction
accuracy drops to the lowest value of 87.07%. As we increase the rate, more
information will be transmitted through the channel, thus the adjusted latent
variables approach the original latent variables. The accuracy increases from
87.07% to 99.07%. When the rate is 10000, the adjusted latent variables are
much more similar to the original ones. The resulting accuracy is the same as
that of the original latent variables.

After experimenting with adjusting the latent variables according to different
rates, we try to figure out the predictive ability of these latent variable in three
generative scenarios:

(1) Using the past measure to predict the future measure;
(2) Using the first voice measure to predict the second voice measure (in the

same position);
(3) Using the second voice measure to predict the first voice measure.

The reason for us to select these three scenarios is because musically, the ad-
jacent measures share many progressive relationships, and in the counterpoint

7 http://www.bachcentral.com/midiindexcomplete.html
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Table 1: The reconstruction accuracy by controlling the rate of the bit-allocation.
Rate 10 100 1000 10000 Original

Reconstruction Acc. 87.07% 90.75% 97.68% 99.07% 99.07%

(a) The rate and mutual
information training results
for the (1) scenario (past-
future).

(b) The rate and mutual
information training results
for the (2) scenario (1st
voice-2nd voice).

(c) The rate and mutual
information training results
for the (3) scenario (2nd
voice-1st voice).

Fig. 8: The training results of different MINE models for different bit-allocation
rates. The x-axis denotes the training epoches. And the y-axis denotes the mutual
information value.

compositions, the first and the second melody in the same measure share many
dependencies. The mutual information between these measure pairs are impor-
tant for us to determine if the model captures the music information dynamics
along with the music development. In detail, each conditional latent variable is
an adjusted one (i.e. after applying bit-allocation), and each predicted latent
variable is an original one. We group every two latent variables into a two-tuple
(zcon, zpred). For example, in the first scenario, zcon is an adjusted latent vari-
able for one musical measure, and zpred is an original latent variable for the
following measure. In the second scenario, zcon is an adjusted latent variable
for single first voice musical measure, and zpred is an original latent variable
for the second voice in the same position. We applied the Mutual Information
Neural Estimation (MINE) to estimate the mutual information between zcon
and zpred, conducting four experiments by controlling the rate to 10, 100, 1000,
and 10000. As shown in Figure 8, all four MINE networks have converged with
corresponding tuple data by achieving a stable mutual information value after
several epochs of training. All models except the one of rate=10 have an infor-
mation rate drop around the 25th-30th epoch but return to increase around the
45th epoch. In total, for the three scenarios we show 3 × 4 = 12 experimental
results. In the appendix, we show an example of four reconstructions for the first
four bars of Bach Invention No.10, where we change the bit-allocation rate from
10 to 10000 to generate the first voice, while the second voice remains the same
(the original one).

Figure 8 and Table 2 show the experimental results for all the scenarios. The
x-axis of Figure 8 is the epoch trained by the MINE network, where we can see
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Table 2: The experiment results of controlling the rate to measure the mutual in-
formation between the conditional latent variables and the predictive latent vari-
ables. The first column shows different predictive scenarios. The other columns
show the mutual information at different rates.

Scenario R=10 R=100 R=1000 R=10000 Original

past-future 67.14 132.42 73.09 83.01 75.12

1st voice-2nd voice 36.96 148.05 93.64 77.85 126.63

2nd voice-1st voice 61.64 91.89 104.92 91.82 82.04

that all models have converged. The y-axis is the mutual information value by
bits at different rates. In the first scenario (past - future), we can see that when
the rate is 100, the mutual information achieves the highest value (132.42 bits).
When the rate is 10000, the mutual information achieves the second highest
value (83.01 bits). In the second scenario (first voice - second voice), we can see
that a rate of 100 and a rate of 1000 achieve the top and the second highest
mutual information values (148.05 and 93.64 bits, respectively). In the third
scenario (second voice - first voice), we can see that a rate of 1000 and a rate of
100 achieve the top and the second highest mutual information values (104.92
and 91.89 bits, respectively), while a rate of 10000 also achieves a competitive
value (91.82 bits).

From the results, we conclude that reducing the representation quality by
lowering the latent bit-allocation can effectively improve the predictive infor-
mation (lower the surprisal) of each voice, as well as prediction across voices.
Mathematically, we showed that the level of mutual information between con-
ditional latent variables and predictive latent variables depends on the level of
reduction in the latent representation. Although the mutual information peaks
at different rates for each scenario, there seems to be an overall preference to-
wards a mid bit-rate range of 100-1000. Compared with the direct prediction
using the original variables as conditions, the bitrate-reduced latent variables
seem to contain more information with respect to the predictive target. There-
fore, a reduced representation may serve as a better choice for some structural
design in terms of temporal conditions or voice relations in predictive/generative
models (i.e., we could use the reduced representation as a condition to generate
new music pieces). We also find that when the rate is 100 or 1000, the recon-
struction accuracy drops to 90.75% and 97.68%, respectively. This means that
we have to sacrifice some of the reconstruction accuracy in exchange for better
predictive ability. This trade-off requires a more meaningful study that we plan
to research in the future. From the perspective of music analysis, these results
suggest that different structural representation and different levels of abstrac-
tion that are used in various music analysis and music composition techniques,
may have an important effect on the type of temporal or multi-voice predictive
quality of music.
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7.2 Polyphonic Music Case

In this section we apply deep information rate analysis to a MIDI file of the
Prelude and Fugue No. 2 in C Minor, BWV 847, by J.S. Bach. The piece was
chosen due to the different nature of its musical texture in the Prelude and Fugue
and availability of musical analysis. The experiments qualitatively explore the
relation between complexity of the encoding and its predictive properties, for
different bit-rates of the encoding representation, and the human analysis.

In the first step of the experiment, we trained a VAE on a set of MIDI
files from the LABROSA8 training set, containing piano performances in the
classical music genre. Our VAE model had an input layer that corresponded to
one bar (16 steps) of polyphonic music. The input encoding was done as multi-
hot representation, with 128 note numbers (pitches) and duration captured into
a single vector by a toolkit midiToNoteStateMatrix 9. The VAE had a single
hidden layer of size 500 10. The trained weights of the VAE encoder were saved
for later use, and the encoder part of VAE was used to create the representation
for the next step of music analysis.

In the second step of the experiment, we input into the network the J.S.
Bach’s Prelude and Fugue and used the bit-allocation method to reduce the
representation complexity of the hidden layer in VAE encoding. Next, VMO
was used to for symbolization of the sequence of the encodings throughout the
whole piece. The symbolisation step is technically needed to be able to apply
the string matching methods of the Factor-Oracle algorithm that is part of the
VMO package and method, as described in section 6.3.

VMO analysis allows estimating the instantaneous information rate along
the piece.

Figure 9 shows the VMO-estimation of the instantaneous information rate
of the latent representation I(Z, T ) at different bit-rates. As a visual reference
we provide in the figure musicological analysis of the harmonic structure of
the prelude and thematic materials of the Fugue11 in sub-figure B, and score
rendering in sub-figure C. Unfortunately at the time of this article’s writing, the
page seems not to be available anymore, so we provide just the main findings of
that analysis.

Moreover, similar to the analysis method of the two-voice inventions in sec-
tion 7.1. we used MINE to compute the average predictive mutual information
across levels of representations, namely between a bit-rate limited encoding of a
single previous bar and a full-rate encoding of the following bar, averaged over
the whole piece. This provides an estimate of the I(Z.Y ) term, as shown in
Figure 10. The top sub-figures A, B, and C show the number of bits allocated

8 This is a dataset of MIDI data that was collected from the Classical Piano MIDI
Page, https://www.labrosa.org/projects/piano/, containing bothe MIDI and synthe-
sized audio from piano recordings using a Yamaha Disklavier piano.

9 https://www.kaggle.com/chetanmj23/pop-music-collection
10 The parameters of the VAE were chosen empirically by subjective judging the quality

of VAE reconstruction
11 http://bachwelltemperedclavier.org/pf-c-minor.html
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Fig. 9: Analysis of information rate using VMO at A: Full Rate, D: Rate 50,
E: Rate 10. Sub-figure B shows harmonic analysis of the Prelude and thematic
analysis of the Fugue, Sub-figure C shows the actual score.

to each of the 500 latent dimensions12. Due to the nature of the plot, case C
looks continuous, but what the line represents is an equal allocations to all la-
tent states, while in cases A and B it can be seen that only some of the latent
dimensions are awarded bits, while others are set to zero. These results show
that the representation rate is monotonically related to the mutual information
it carries towards predicting the next bar at full rate. This is different from
the inverted U relation we saw across voices in the previous section 7.1, where
the voices where strongly related at a mid-range of the representation bit-rate.
This difference in behavior can be explained by the different nature of the ex-
periments. In the two voice invention study a mild reduction in bit-rate reveals
more correspondence between the reduced representation of the two voices. In
the polyphonic case of Bach’s Prelude and Fugue, the analysis indicates that it
is actually more difficult to predict the next instance of the musical surface from
its reduced past instance, since the reduced past carries less information about
the precise musical details to follow. In should be noted that we could not apply
the VMO method to measure instantaneous predictive information across levels
of representation, since VMO operates on a single data stream over time. De-

12 A full rate was considered be be a rate of 10,000, which receives an allocation of 20
bit per dimension.
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Fig. 10: Estimation of I(Z, Y ) that represents the predictive quality of a past
bit-limited representation towards the next frame of the full-rate representation.
Sub-figures A,B,C show the bit-rate allocation at rates 10, 50, and 10000, re-
spectively. The x-axis corresponds to the 500 latent state variables, with portions
showing no-bit allocation basically not being transmitted or accounted for in the
latent representation. Sub-figures D,E,F show the MINE estimate as function of
the training epochs, for these rates. The orange lines are changes in the learning
rate that effectively signal the epoch where the MINE estimator reaches close to
its final mutual information estimate value.

veloping computational measures for instantaneous information transfer across
sequences or levels of representation is a topic for future research.

7.3 Discussion

Although the results are largely qualitative, one can see that changing the rep-
resentation quality has a dramatic effect on the information dynamics of the
latent representation. On one extreme, when the rate is too low (like the case
of Rate=10), after the initial surprise of introducing musical materials, most of
the Prelude and Fugue “sound the same”, as represented by an almost constant
flat line at the top of Figure 9, Sub-figure E. The more subtle changes can be
observed between sub-figures A and D, with Full Rate and Rate=50, respectively.

If we interpret information dynamics as measures of expectations formed
by our imagination or mental representation that are inherently lossy, then the
points at which the information rate changes at different bit-rate levels should be
indicative of moments that carry creative or experiential significance at different
levels of reduction. For instance one can see that the major events, such as
transition to new materials in bars 25-27 cause a drop in information rate. Also,
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Fig. 11: Log Spectral Distortion of Bach Prelude at Varying Bit Allocation Rate

Table 3: The Reconstruction Distortion with respect to Bit-Allocation Rate
Rate 10 100 200 500 Original

Log Spectral Distortion (dB) 9.562 8.160 7.377 7.185 7.185

the development of thematic material in the Fugue starting around bars 44-45
causes an increase in information rate in both full rate and at a rate of 50 13.
For high bit-rates, the graph of IR seems to be relatively robust, and for very
low-rates the quality of musical reconstruction seems to be too low to capture
significant musical information. For rate of 10 we see that after a short initial
period where materials were not repetitive (low information rate), the rest of
the music is perceived as one long repetition (high IR).

7.4 Audio Case

For our experiments with audio, we trained and evaluated VAE on audio files
from the LABROSA data-set, as we did with the polyphonic MIDI experiment.
The VAE used had a single fully connected hidden layer of size 100. More details
on the architecture are available in Appendix B. Training was performed using an
Adam Optimizer with a cyclical annealing schedule weight on the KL divergence
loss (Fu et al., 2019) to promote stronger reconstruction, and early stopping to
select the best model on the validation set. The experiments described below
were performed on a WAV file of J.S. Bach’s Prelude No.2 in C Minor, BWV
847.

Audio is reconstructed from the STFT spectrograms via the Griffin Lim al-
gorithm (Griffin & Lim, 1984). Reconstruction of the audio is then evaluated
using the log spectral distortion between the original and reconstructed audio
tracks as defined in section 3.3. Full rate reconstruction of the the test audio
file provides a log spectral distortion of 7.185 dB. We then measured the re-
construction quality of audio as we applied bit-allocation to control the amount

13 The units of bit-rate reduction are total bits per measure
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(a) Original (b) Full Rate

(c) Rate = 100 (d) Rate = 20

Fig. 12: Spectrograms of two measure excerpt at various bit-allocation rates

of bits of the latent variable that are transmitted per audio frame. Figure 11
depicts the relationship between the amount of latent bits per frame and the
reconstruction quality measured in log spectral distance. As bit rate decreases,
we notice a decrease in reconstruction quality as indicated by the increase in
log spectral distortion. At around 200 bits, the perceived reconstruction error
plateaus, making the bit-reduced reconstructions near indistinguishable from
the full rate reconstruction. Figure 12 depicts short spectrogram clips for audio
reconstruction at low, middling, and full bit-allocation rates. The spectrogram
of the full bit-allocation rate closely matches the structures seen in the original
structure. Around 100 bits per frame, noticeable artifacts appear throughout the
spectrogram and create unwanted harmonics. At bit-allocation rates lower than
50 bits, much of the original structure is difficult to discern as fewer differences
are allowed between audio frames, resulting in a sound that resembles a constant
resonant hum that “averages” the tonal qualities of the piece into one complex
timbre.

As the audio frames are of relatively short duration, the time structure of the
signal requires predictions based on a long memory. Accordingly, VMO was used
to measure the structure of the predictive information in a musical track and
in its latent encoding. Cosine distance between latent encodings is used when
computing thresholds in the quantization of states for VMO. Figure 13 shows
the information dynamics of an audio track at varying bit-allocation rates. In the
audio domain, we make similar observations regarding the relationship between
bit-allocation rate and the patterns in information rate as those made with
MIDI data in section 7.2. At low bit-rates, the quality of audio reconstruction
was much too low for VMO to capture meaningful information dynamics. Higher
bit-rates exhibit more meaningful variation in information rate. For instance, in
the first 80 frames we see much more varying activity in the higher frequency
bins, matched by the relatively low and rapidly fluctuating information rates.
Although most of the analysis is qualitative at this point, we plan to explore the
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Fig. 13: Analysis of Information Rate using VMO of Audio of Bach Prelude

utility of bit-rate reduction for generative purposes, similar to the monophonic
generation experiments reported in section 7.1.

8 Summary and Discussion

In this paper, we presented a theoretical framework of musical creativity and
surprisal formulated in terms of information theoretical relations between full-
rate (high-fidelity) encoding of the musical data, and a lower complexity latent
encoding that models reduced informational aspects of musical structure. Some
of the motivation for such reduction comes from limited capacity of mental or
imaginary musical representations that might play role in listening or composi-
tion. The cognitive assumption is that musical creativity and musical perception
take into account a trade-off between abstraction or simplified representation of
music, which captures more salient or structural aspects of music, and the per-
ceptual sensibility to the musical surface that is abundant in its sonic or musical
notation detail.

8.1 Novel Learning Principle for Creative Systems

In this paper, we proposed a DMID principle that minimized the amount of
information dynamics happening on the musical surface (mutual information
between past X and future Y of the musical signal), given that we have the
ability to extract a musical reduction or form an embedding (latent representa-
tion Z derived from past surface X) that captures both the temporal structural
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relations between musical past and present, and is able to predict the future
of the musical surface in detail. This principle was expressed mathematically
as min{I(X,Y |Z)}. This approach explicitly points to the importance of un-
derstanding the relation between deep encoding of musical surface, measured in
terms of the ability of latent representation to capture the surface detail, and
the structural aspects of the reduced representation, measured in terms of Infor-
mation Dynamics of these latent states. The encoding of the musical surface was
done using a Variational Auto-Encoder (VAE). An interesting insight into the
DMID principle comes from the relation between the mutual information of the
latent codes Z comprising the musical reduced representation and musical sur-
face X. In (Alemi et al., 2017) it was shown that maximization of Evidence Lower
Bound (ELBO) is equivalent to minimization of I(X,Z) for the VAE encoder
combined with minimization of the decoder reconstruction error D(X,Z). This
provides yet another insight into combined objective of representation learning
and DMID, expressed as a loss L

minL = min(−ELBO(β) + γDKL(p(Y |X)||p(Y |Z))) (12)

= min(I(X,Z) + β〈D(X,Z)〉 − γ(I(Z, T )− I(Z, T |Y ))) . (13)

where we omitted the I(X,Y ) term that does not depend on the model param-
eters. This gives us an insight into a combined principle for a learning creative
musical system that is formulated in terms of multiple simultaneous goals:

– finding the most efficient embedding or smallest latent encoding (minimal
I(X,Z))

– best reconstruction of the surface data from this embedding (minimalD(X,Z))
– best anticipation of the embedding expressed in terms of highest information

dynamics in the latent space (maximizing I(Z, T ))
– and finally, least discrepancy or least surprisal in the latent embeddings when

the next musical surface is revealed (minimal I(Z, T |Y ))

To the best of our knowledge, no such conceptual or computational frame-
work had been previously offered, which we believe provides important insights
for design and understanding of creative musical systems. It also should be noted
that DMID framework explicitly takes into account the structural importance of
temporal relations for learning musical representations in a generative setting.
Generative models are the necessary first step in planning or active learning ap-
proaches where an agent learn to operate in a world that has latent causes that it
has to infer, and actions it can do on the world. These active inference approaches
have recently been suggested as models for creativity and fun (Schmidhuber,
2010),(Salge, Glackin, & Polani, 2013). There are many common conceptual
parallels between DMID and agent model, where it was demonstrated that a
reduced representation of the data extracted from the world where an agent op-
erates is important for successful agent operations. The learning framework and
formalism in these models is one of Reinforcement Learning, where compact and
simple policy is trained not only to solve a required task, but also the agent can
be trained inside of its own dream environment generated by its world model.
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DMID is much more limited in this respect, as it focuses on modeling the musical
“world”, rather then learning a behavior to execute a specific task, or operate
through intrinsic motivation or sense of agent empowerment when the task is
not defined. It should be noted that only after a correct representation is learned
by the agent and a generative model is created, reinforcement learning may al-
low making inferences about sequences of latent states of the world that form
optimal policies for agent’s behavior in that world. In active learning literature
the temporal aspects of data are modeled through agent behavior. Accordingly,
time structures are captured by learning policies or by choosing the sequence of
states, usually motivated by minimizing surprisal for the agent operating in that
world. In the case where there is a lack of sensory input, maximising the options
for the agent by putting it into a position of having most number of options is
know as “empowerment”. Exploring the policies or intrinsic motivations of such
agents is an important next step in music research, and we see great potential
of combining representations that are learned using DMID with active inference
models for musical agents. Accordingly, we envision more interesting insights
and practical results from using DMID in the active learning setting.

The results presented in the paper are meant to support this framework by
demonstrating the analytical potential of our approach, also outlining the algo-
rithmic tools used at each step. The code and examples related to the experiment
reported in this paper can be found at https://github.com/RetroCirce/DMID-
Analysis-Music-Dynamics
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Appendix

A Proof of Equation 1

In our notation, DKL(·, ·) is the Kullback-Liebler distance between different dis-
tributions, and I(·, ·) is the mutual information between their random variables.

DKL(P,Q) =

∫
p(x) log

p(X)

q(X)
dX (14)

with Mutual information defined as

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y ) (15)

and signal entropy given by

H(X) = −
∫
p(X) log p(X)dX (16)

Another useful relation is between KL distance and Mutual Information, which
can be derived from the above definitions,

I(X,Y ) = DKL(p(X,Y ), p(X)p(Y )) = DKL(p(X|Y )p(Y ), p(X)p(Y )) (17)

In other words, Mutual Information I(X,Y ) measures the KL distance between
a joint distribution P (X,Y ) = p(X,Y ) and marginal distribution Q(X,Y ) =
p(X)p(Y ). Taking into account the Markov relations Z − X − Y , we have the
following conditional independence relations between our variables p(Y,X,Z) =
p(Y |X,Z)p(X,Z) = p(Y |X)p(X,Z). Using the definition of KL divergence and
the averaging over P (X,Z) we have

〈DKL(p(Y |X)||p(Y |Z))〉p(X,Z)

=

∫
p(X,Z)(

∫
p(Y |X) log

p(Y |X)

p(Y |Z)
dY )dXdZ

=

∫
p(X,Z, Y ) log(

p(Y |X)p(X)

p(X)p(Y )

p(Y )p(Z)

p(Y |Z)p(Z)
)dY dXdZ

=

∫
p(X,Z, Y ) log(

p(Y,X)

p(X)p(Y )
−
∫
p(X,Z, Y ) log(

p(Y )p(Z)

p(Y,Z)

= I(X,Y )− I(Z, Y )

where we used the KL and Mutual information relations shown above.
The last remaining relation we need to show is that I(X,Y |Z) = I(X,Y )−

I(Z, Y ). This can be proved by considering the definition of mutual informaiton
as

I(X,Y ) = H(Y )−H(Y |X)

I(Z, Y ) = H(Y )−H(Y |Z)

and using the Markov relation H(Y |X,Z) = H(Y |X) to see that I(X,Y |Z) =
H(Y |Z) − H(Y |X,Z) = H(Y |Z) − H(Y |X) = H(Y ) − H(Y |X) − H(Y ) +
H(Y |Z) = I(X,Y )− I(Z, Y )
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B Audio VAE Architecture

Audio VAE Encoder (left) and Decoder (right). The encoder consists of five 2D
convolutional layers and two max pooling layers. Two linear layers generate the
mean and logarithmic variance used to sample the output of the encoder. The
decoder also consists of five transpose convolution layers and two upsampling
layers to restore the output to the original shape of the input.
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C Manipulating Latent Variables by Bit-allocation and
Demos

(a) The original four bars of Bach Invention No.10

(b) The reconstructed four bars of Bach Invention No.10 under rate = 10.

(c) The reconstructed four bars of Bach Invention No.10 under rate = 100.

(d) The reconstructed four bars of Bach Invention No.10 under rate = 1000.

(e) The reconstructed four bars of Bach Invention No.10 under rate = 10000.

The reconstruction musical bars from the latent variables with different bit-
allocation rate. The music in the first voice is generated from different bit-
allocation rate, while the second voice remains the same (the original one).



40 Shlomo Dubnov et al.

References

Abdallah, S., & Plumbley, M. (2009, June). Information dynamics: Patterns of
expectation and surprise in the perception of music. Connect. Sci , 21 (2-3),
89–117.

Alemi, A. A. (2019). Variational predictive information bottleneck. In Aabi.
Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., Saurous, R. A., & Murphy, K.

(2017). An information-theoretic analysis of deep latent-variable models.
CoRR, abs/1711.00464 .

Allauzen, C., Crochemore, M., & Raffinot, M. (1999). Factor oracle: A new
structure for pattern matching. In SofsemÕ99: Theory and practice of
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