
Neural Models for Target-Based
Computer-Assisted Musical Orchestration: A

Preliminary Study

Carmine Emanuele Cella1, Luke Dzwonczyk1, Alejandro Saldarriaga-Fuertes1,
Hongfu Liu1, and Hélène-Camille Crayencour2

1 CNMAT - University of California, Berkeley
2 Centrale Supélec, L2S, Univ. Paris-Saclay, CNRS

carmine.cella@berkeley.edu, dz.luke@berkeley.edu

Abstract. In this paper we will perform a preliminary exploration on
how neural networks can be used for the task of target-based computer-
assisted musical orchestration. We will show how it is possible to model
this musical problem as a classification task and we will propose two
deep learning models. We will show, first, how they perform as classi-
fiers for musical instrument recognition by comparing them with specific
baselines. We will then show how they perform, both qualitatively and
quantitatively, in the task of computer-assisted orchestration by compar-
ing them with state-of-the-art systems. Finally, we will highlight benefits
and problems of neural approaches for assisted orchestration and we will
propose possible future steps. This paper is an extended version of the
paper “A Study on Neural Models for Target-Based Computer-Assisted
Musical Orchestration” published in the proceedings of The 2020 Joint
Conference on AI Music Creativity.

Keywords: computer-assisted orchestration, CNN, LSTM, ResNet, Or-
chidea

1 Introduction

The development of computational tools to assist and inspire the musical com-
position process constitutes an important research area known as Computer-
Assisted Composition (CAC) (Fernandez & Vico, 2013; Ariza, 2005). Within
CAC, target-based computer-assisted orchestration is a compelling case of how
machine learning can be used for enhancing and assisting music creativity (Maresz,
2013).

Target-based computer-assisted orchestration takes a target sound as an in-
put and attempts to find instrumental samples that best match the target given
a specific similarity metric and a set of constraints. The target can be any arbi-
trary sound file, it does not have to be pitched, rhythmic, or “musical” in any
way. A solution to this problem is a set of orchestral scores that represent the
mixtures of audio samples in the database, ranked by similarity with the target
sound. Valid orchestral scores may contain several instruments sounding simul-
taneously, selected out of a large number of possible combinations of sounds from
the database.

2 Carmine Emanuele Cella et al.

The approach studied in (Carpentier, Tardieu, Harvey, Assayag, & Saint-
James, 2010) consists in finding an orchestration for any given sound by searching
combinations of sounds from a database with a multi-objective optimization
heuristic and a constraint solver that are jointly optimized. Both the target sound
and the sounds in the database are embedded in a feature space defined by a
fixed feature function and each generated combination of sounds is evaluated by
using a specific metric. This method has been substantially improved in (Cella
& Esling, 2018; Cella, 2020) and is implemented in the Orchidea toolbox for
assisted orchestration (www.orch-idea.org), currently considered the state-of-
the-art system for assisted orchestration.

In this paper, we try a different approach to this problem by framing computer-
assisted orchestration as a classification task. The main idea is to train a model to
classify combinations of real instruments and then use this model for orchestra-
tion. To solve this classification problem, we turn to deep neural networks, which
have shown success among a variety of classification tasks. Where Orchidea has
multiple pre- and post-processing steps, we create an end-to-end network that
takes a target sound as input and outputs a list of samples that can be combined
to create the orchestrated solution.

A typical solution for assisted orchestration is a set of triples instrument-
pitch-dynamics such as {Flute C6 pp, Bassoon C4 mf, Bassoon G4 ff}. By
training a neural network with real combinations of instrumental notes, it will
acquire the ability to identify the presence of each instrument and its associ-
ated pitch by building the appropriate latent representation. Thus, when an
unknown target sound is given as input, the network will identify which are the
best instruments to match the target sound, and it will be able to deconstruct
a complex mixture of timbres into individual instrument notes. This method
is motivated by the good results obtained in previous research on musical in-
struments identification (Benetos, Kotti, & Kotropoulos, 2007; Kitahara, Goto,
& Okuno, 2005) and the more recent use of deep neural networks for musical
classification (Lostanlen & Cella, 2016; Bian et al., 2019).

We perform preliminary experiments with two deep architectures: a convo-
lutional neural network (CNN) with a long short-term memory (LSTM) unit in
the middle and ResNet, a well known residual architecture that has yielded pos-
itive results for image classification (He, Zhang, Ren, & Sun, 2015). We choose
to use a CNN because of its success in audio classification (Hershey et al., 2016)
and include an LSTM unit in it because of its ability to learn long term depen-
dencies in data (Hochreiter & Schmidhuber, 1997), which is important given the
temporal nature of audio.

After training these models on varying combinations of 10 instruments, we
perform orchestration by feeding target sounds to the networks and synthe-
sizing a solution from the samples output from the system. We then compare
our orchestrations to Orchidea’s solutions for the same targets, through both
qualitative and quantitative means. For quantitative comparison, we compute
a specific distance metric on the amplitude spectrums of the target and solu-
tion, comparing the distance between Orchidea’s solution to the target and our
model’s solution to the target.

www.orch-idea.org

Neural Models for Target-Based Computer-Assisted Musical Orchestration 3

The next sections will be as follows: section 2 will describe the dataset we used
for experiments and the models we trained as classifiers, showing the classifica-
tion results. Sections 3 and 4 will present, respectively, the results of orchestra-
tion experiments using the trained models and the conclusions of our preliminary
study on neural approaches for target-based computer-assisted orchestration.

The codebase for this paper can be found at https://github.com/dzluke/
DeepOrchestration and you can listen to audio examples at https://dzluke
.github.io/DeepOrchestration/.

2 Neural models

2.1 From Classification to Orchestration

In this paper, we model assisted orchestration as a classification problem. The
general methodology is as follows:

1. We train specific models to classify the instruments present in combinations
of sounds from a database of instrument notes, up to ten simultaneous in-
struments;

2. We then pick the best classifier and we feed into it an unknown sound to be
classified;

3. Since the output of the classifier will be in the form of the probability that
specific instruments-note pairs are present in the sound, we use this infor-
mation to synthesize an orchestration for the target sound;

4. Finally, we evaluate the generated orchestration against state-of-the-art sys-
tems for computer-assisted orchestrations.

In order to have a baseline to compare our classification results and to get
a sense of the complexity of the problem, we used various parametric classi-
fiers along with the neural models. As described in section 2.4, three baseline
parametric classifiers have been trained on simplified versions of our problem.
They have been trained to either identify only the instruments present, or the
instruments and pitch classes present, two simplified versions of our problem.

Two neural classifiers have been trained on the problem of recognizing instrument-
pitch pairs, which has a total of 424 classes (i.e. 424 unique instrument-pitch
pairs). We want to point out, however, that this is still a simplified problem
compared to assisted orchestration. A complete orchestration solution would nor-
mally be made by triples of instrument-pitch-dynamics. It is difficult to frame
this problem as classification, since we would need to have a very high number of
classes. Moreover, for the nature of the samples we use (a typical sample is in the
form Flute-C4-pp, as described in section 2.2), each class would be represented
by a single sample. For these reasons, our models have been trained on simplified
versions of the original problem, and we employed a different strategy to deter-
mine dynamics. When a network is given a target sound as input, it will attempt
to apply the same classification rules, outputting a vector of the probabilities of
each sample being in the target sound. Since the classes only encode instrument-
pitch pairs but we also need the dynamics, we quantize the probability function
generated by the network into three echelons coresponding, respectively, to the

https://github.com/dzluke/DeepOrchestration
https://github.com/dzluke/DeepOrchestration
https://dzluke.github.io/DeepOrchestration/
https://dzluke.github.io/DeepOrchestration/

4 Carmine Emanuele Cella et al.

dynamic levels pianissimo, mezzoforte and fortissimo (see section 3). By tak-
ing the instruments and pitches that have the highest probability and by using
quantized probabilities to retrieve dynamics, a full orchestrated solution can be
created. Fig. 1 illustrates the described ideas.

Fig. 1: An overview of the proposed method for assisted orchestration with
neural models. Instruments and pitches are determined as peaks of the output
probability distribution, while the dynamics are computed by quantizing the
probabilities.

2.2 Dataset

To create the input data for training the classifiers, we used the TinySOL
database. TinySOL is a subset of the Studio On Line (SOL) database created
by IRCAM (Cella et al., 2020). TinySOL contains 1,529 samples from 12 instru-
ments. The instruments come from different orchestral families: strings, wood-
winds, and brass. Each sample is one instrument playing a single note in the
ordinario playing style, with one of three dynamics: pp, mf, or ff (for example
Flute-C4-pp or Clarinet-D5-mf). The instruments and ranges over which they
were recorded are summarized in Tab. 1.

For a given number of instruments N , each input to our model is a combi-
nation of N randomly selected TinySOL samples chosen from an orchestra of
ten instruments. The only constraint imposed on the random selection is that
there cannot be more than three samples from the same instrument in any one
combination. We do this to ensure instrumental variety in the combinations. By
randomly selecting the samples, we achieve a variety of instruments, pitches, and
dynamics while avoiding introducing any bias in the combinations that could re-
sult from hand-picking the samples. The selected samples are combined to be
played simultaneously and the magnitude is normalized by the number of instru-
ments. The resulting combination has a sample rate of 44100Hz and is padded
or trimmed to be exactly four seconds long.

We then computed the Mel spectrogram of the combination to be the features
input to our models. We generated the Mel spectrogram using an FFT hop length
of 2048 samples (the window of each FFT was 46ms long), and a number of Mel

Neural Models for Target-Based Computer-Assisted Musical Orchestration 5

bins equal to 128. Therefore, the Mel features fed to the model were matrices of
size 128× 345. We used the Librosa package in Python to compute the features;
more details on the exact computations can be found in (McFee et al., 2015).
The choice of the hop length is a compromise between the amount of information
extracted by each FFT window, and the ability to capture temporal changes in
the sound.

The Mel spectrogram is a representation of sound that mirrors the non-linear
way in which humans perceive frequency, which makes it a perceptual represen-
tation of sound. Since we are attempting to recreate the timbre of a sound, and
timbre is a perceptual descriptor, the Mel spectrogram is a fitting representation.
It is common in music information retrieval (Mckinney & Breebaart, 2003) and
has been successfully used in other tasks that employ neural networks for sound
classification (Salamon & Bello, 2017).

Table 1: Table showing the pitch ranges present in the TinySOL database.
Instrument Abbreviation Range

Violin Vn G3-E7
Cello Vc C2-C6
Viola Va C3-C7

Trumpet in C TpC F#3-C6
Trombone Tbn A#0;A#1-C5

Oboe Ob A#3-A6
Horn Hn G1-F5
Flute Fl B3-D7

Clarinet in B[ClBb D3-G6
Contrabass Cb E1-C5
Bass Tuba BTb F#1-F4
Bassoon Bn A#1-D#5

2.3 Data Augmentation

In order to increase variability in the generated data for the neural models,
we also used two methods of data augmentation as described in (Salamon &
Bello, 2017; Bhardwaj, 2017); more specifically, we used pitch shifting and partial
feature dropout.

Pitch shifting was applied on the TinySOL samples each time they were
selected to generate a new combination. We performed a small pitch shift by
reading the samples with different sample rates: a small difference in sample
rate will slightly modify the duration and the perceived pitch if played at the
normal sample rate. In practice, the sample rates used for this data augmentation
were within 5% of the actual 44100Hz.

Partial feature dropout was performed on the feature matrix itself of input
samples, the Mel spectrogram. We chose random columns and rows of the matrix
to zero out. For a given matrix, each column and each row had individually a

6 Carmine Emanuele Cella et al.

1% chance to be set to zero, which yielded an average of 1.28 columns and 3.45
rows being zero-ed out.

We chose to perform data augmentation solely for increasing the robustness
of the models, not for any musical reasons. Data augmentation is only applied
during training, so no pitch shifting or feature dropout occurs when orchestrating
a target.

2.4 Baselines

In order to get a better sense of the complexity of the problem, we tested three
baseline classifiers: support vector machine (SVM), random forest (RF), and K-
nearest neighbors (KNN). We used the implementations provided in the scikit-
learn library for Python (Pedregosa et al., 2011). More specifically, for SVM we
used a non-linear RBF kernel and for RF we set the maximum depth of each
tree to be 15. All of the baseline experiments used 50,000 generated samples
with a train-test split of 60/40. Each sample was made by a combination of one
to ten instruments and was four seconds in length. At the beginning of each
experiment, a new set of combinations was created.

In this case, differently from the neural models, the features used are the
Mel-frequency cepstral coefficients (MFCCs) of the resulting combination. We
chose to use MFCCs for this setting, instead of the Mel spectrogram, to have
a lower number of features which is more manageable for parametric classifiers.
We found SVM to have the highest accuracy of the three classifiers across all
experiments.

The complete problem of classification of the instrument-pitch pairs has 424
total classes. This problem is very difficult for parametric classifiers, so we ini-
tially switched to the simpler problem of classifying only the instruments and
not the pitch. This had the benefit of both reducing the number of classes and
increasing the number of samples per class. We found that SVM was able to very
accurately identify the instrument given an input that had only one instrument
present; for this case the accuracy was 99.8%. However, as soon as multiple in-
struments were present in the input, the accuracy dropped significantly. With
two instruments, accuracy was 55.4%, with three it was 19.6%. KNN performed
significantly worse than SVM, so we did not attempt any further testing with it.

To better approximate our original problem of identifying instrument and
pitch, however, we performed experiments in which two instruments were se-
lected and for input data that contained samples from one of those two instru-
ments, both the instrument and pitch class of the sample would be classified. The
pitch class is the note name without the octave, e.g. C, D#, G, etc. The input
was a combination of two instruments drawn from a possible twelve instruments,
and the classifier attempted to identify which instruments were present and for
the specified instruments, say Violin and Viola, which pitch classes were present.
If another instrument was present in the input combination that was not Violin
or Viola, the classifier would simply identify that an instrument that was not
one of the two was present. A selection of the results from this experiment are
outlined in Tab. 2. Since RF performed worse than SVM in every experiment,
we stopped testing with it and used SVM from that point on.

Neural Models for Target-Based Computer-Assisted Musical Orchestration 7

We then performed this same experiment with three instruments having their
pitch class identified. Flute, Oboe, and Violin reached an accuracy of 11.1%, and
Bass Tuba, Trumpet, and Trombone was 0.5%. As we increased the number of
instruments whose pitch classes was being identified, the accuracy continued to
drop. For classifying the pitch class of four instruments (Oboe, French Horn,
Violin, and Flute) the accuracy was 2.7%.

This was still a simplified version of the problem, as we were identifying
only the pitch class of a few instruments. However, the parametric classifiers
were unable to achieve accurate results as the number of instruments increased.
Therefore, we did not attempt, with parametric classifiers, the full setting of
the problem in which individual pitches are classified for all instruments, and
instead turned to neural models.

Table 2: Comparison of accuracies between SVM and RF. Each input to the
models is a combination of two TinySOL samples, where at least one of the
samples is from one of the two instruments specified for that experiment.

Instr. 1 Instr. 2 SVM Acc. RF Acc.
Violin Flute 38.8% 9.8%
Violin Trumpet 33.8% 9.1%
Violin Cello 34.8% 6.3%
Cello Viola 32.1% 5.8%
Oboe French Horn 39.9% 17.5%

2.5 CNN with LSTM

The first deep model we trained as a classifier for musical instruments and
pitches was a CNN with a LSTM unit, whose structure is inspired by the suc-
cess in (Salamon & Bello, 2017). CNNs show good performance on classification
problems for their ability to extract spatial features, and have shown success in
audio classification (Hershey et al., 2016). LSTM units provide a way to learn
long term dependencies in the data (Hochreiter & Schmidhuber, 1997), which is
relevant given the sequential nature of audio.

Our architecture is made of four convolutional layers and two fully connected
layers. Each convolutional layer is followed by a BatchNorm layer, a ReLU ac-
tivation layer and a 2× 2 MaxPool layer with a stride of two. The kernel size is
3× 3 with a stride of 1 and a padding of 1. The number of filters are eight, 16,
32, and 32.

Following the first three convolutional layers, there is an LSTM layer which
outputs 32 matrices. After the LSTM layer, there is a final convolutional layer
yielding a tensor of dimensions 32×8×21. We flatten the outputs and feed them
into a fully connected layer with Dropout, then another fully connected layer.
Finally, the sigmoid function is applied to the final layer. Since each class is inde-
pendent, we are able to take the sigmoid activation and use binary classification
for each class. The model architecture is shown in Fig. 2.

8 Carmine Emanuele Cella et al.

Fig. 2: Diagram of the CNN with LSTM architecture.

2.6 ResNet

The second and deeper model that we trained as classifier was the well known
deep residual network ResNet (He et al., 2015). Specifically, we used 18-layer
ResNet, which allows information to pass directly from the input to the final
layer of each block. To make the model more suitable to our problem, we decided
to use an architecture with 4 blocks whose outputs are of size 32, 64, 32 and 32
respectively.

2.7 Classification Results

During training, the loss function used to optimize the inner parameters of the
model was binary cross entropy, as it is the common choice for multiclass multi-
label classification frameworks. However, the value of the loss function alone is
difficult to interpret. For this reason we created a complementary function f to
be used for evaluation only. This function compares a vector of expected outputs
X with the estimated output from the model X̂ by using the following function

f(X, X̂) =
1

N
< X,MN (X̂) > (1)

where

MN (X̂)i =

{
1 if i ∈ IN (X̂)
0 otherwise

(2)

and IN (X̂) is the set of indices containing the N first maximums of the vector

X̂. More specifically, the function MN (X̂) takes as an input a vector of probabil-
ities and outputs a vector where only the positions of the N first maxima are set
to one. This new vector would be the orchestration of N instruments given by
the model. Thus, the function f simply outputs the proportion of the estimated

Neural Models for Target-Based Computer-Assisted Musical Orchestration 9

Fig. 3: Best overall accuracy for CNN with LSTM (50 epochs, 200k samples
per epoch) and ResNet (20 epochs, 400k samples per epoch) depending on the
number of instruments in the combinations used for training.

orchestration that matches the expected one. For this reason, the evaluation
was done by comparing the proportion of estimated orchestration samples, cho-
sen among the samples that output the highest probability, that matched the
expected orchestration.

Different experiments were made by varying the number N of samples in each
mixture. We used an orchestra of 10 instruments: French Horn, Oboe, Violin,
Viola, Cello, Flute, Trombone, Bassoon, Trumpet in C and Clarinet in Bb. Then,
for both CNN with LSTM and ResNet, we computed the accuracy on the test
sets across epochs, and kept the best one as an indicator of the performance of
the models.

The CNN was trained on 200,000 generated samples over 50 epochs, and
ResNet was trained on 400,000 generated samples over 20 epochs. ResNet, being
a deeper model than the CNN, requires more data per epoch during training.
Fig. 3 shows the best overall test accuracy achieved by both models across the
number of samples N . ResNet outperforms the CNN regardless of the number
of samples used in the combination. This result is consistent with previous re-
search (He et al., 2015), as residual networks usually perform well in classification
problems.

Fig. 4 shows the maximum test accuracy for each model. For ResNet, the
variance in accuracy is much smaller until N reaches five, at which point it
becomes similar to the CNN. The results on both figures show consistency on
the relative accuracy of instruments, which was for us the first step towards the
validation of this method. Flute, Trombone and Trumpet yield the worst results
for both models.

While it is not easy to explain these differences in accuracy, we hypothesize
this being related to the nature of peculiar spectral and temporal morphology

10 Carmine Emanuele Cella et al.

of each instrument. For example, flute notes tend to exhibit a steep spectral
rolloff, with most of the energy captured by the first few partials. Moreover, the
noisy nature of the transient portions of these notes is not well represented by
frequency-based descriptions such as Mel spectra. These two factors combined,
could make the disentanglement of the flute from the analyzed combination more
difficult.

Strings give similar results across both models. An interesting point to notice
is the very high accuracy of Oboe on both models. This could indicate that there
is an optimal spectral shape that maximizes the probability of being detected in
such classification framework.

(a) CNN with LSTM (b) ResNet

Fig. 4: Plot showing per instrument accuracies for CNN with LSTM and ResNet
depending on the number of samples present in the combinations

3 Orchestration Experiments

After training the neural models for classification, we finally tested them for the
task of target-based computer-assisted orchestration.

To orchestrate, a target sound is input to the model, and the ten classes with
the highest probability are extracted. These ten classes are the instrument-pitch
pairs that are most represented in the target, and can be from any combination
of the ten instruments.

Since we decided not to train our models to classify the dynamics of a sample
(despite TinySOL having pianissimo, mezzoforte, and fortissimo recordings),
the dynamics are determined by the probability of each sample as output by
the model. If the model outputs a probability higher than 0.66 for a sample,
the fortissimo version of the sample is used. If the probability is between 0.33
and 0.66, then the mezzoforte version is selected and if it is less than 0.33 the
pianissimo version is used. The idea behind this quantization is that samples
that are the most represented in the target should appear as the loudest in the
orchestrated solution.

Neural Models for Target-Based Computer-Assisted Musical Orchestration 11

In order to test our models for orchestration, we used 15 targets from the
Orchidea distribution. These targets represent a variety of signal types but are
mostly static, meaning they do not have significant harmonic change over time.
Some of the targets were made of instrumental samples: a sum of oboe and bas-
soon notes, single bassoon and bass clarinet notes, two multiphonics of bassoon
and two symphonic chords. Other targets were recordings that were not instru-
mental: bell sounds, car horn, gong, screaming voice, wind harp, the attack of a
brass instrument, and the recording of a boat docking.

Model Ob + Bn Bn Bass cl. Bell 1 Bell 2 Multiph. 1 Car horn Boat
CNN with LSTM 0.17 0.28 0.70 0.55 0.26 1.10 0.68 1.12

ResNet 0.34 0.50 0.48 0.59 0.45 0.90 0.49 1.16

Model Wind harp Chord 1 Multiph. 2 Chord 2 Gong Scream Brass Average
CNN with LSTM 0.55 0.79 0.70 0.57 0.73 1.14 0.79 0.71

ResNet 0.61 0.86 0.51 0.37 0.71 1.03 1.05 0.66

Table 3: Quantitative comparison of orchestrations as ratios to Orchidea. Eqn. 3
was used to compute distances between orchestrations and targets. What is
shown is the ratio between the distance of Orchidea’s solution to the target and
our solution’s distance to the same target. A value less than 1 means that our
model performed worse (i.e. had a larger distance), and a value greater than 1
means our model performed better than Orchidea. The last column shows the
ratio of the average distances for the model across all targets.

3.1 Evaluation

We evaluated our orchestrations both qualitatively and quantitatively by com-
paring our solutions to the solutions generated by Orchidea, the state-of-the-art
system for computer-assisted orchestration.

Orchidea implements many advanced features that are not supported by our
models. For example, it is able to apply symbolic constraints to the search, hence
allowing only specific instrumental combinations or playing styles. It is also able
to reduce the search space by applying harmonic analysis on the target sound.
The dominant harmonic partials of the target are identified, and the search space
is limited to only include samples of those pitches. For example, if the target is a
recording of an instrument playing a C4, then the partials identified may be C4,
C5, G5, and E6. The model would then only consider samples of these pitches to
be used in the solution. This leads to a solution whose harmonics are much closer
to the target, which is an important part of aural similarity. Orchidea’s solutions,
moreover, can use any number of instruments included in the orchestra specified
by the user, thus having variable-sized orchestrations from a single instrument
to the whole set (this property is called the sparsity of the solution).

In order to have a better comparison, we did not allow Orchidea to use any
of the advanced features: we did not apply any symbolic constraints or harmonic
analysis and forced it to use all ten instruments in each solution. This creates

12 Carmine Emanuele Cella et al.

a more fair comparison, since our models are unable to create constrained or
sparse solutions.

Qualitative evaluation was done through an acoustic inspection of the solu-
tion, paying close attention to timbre and pitch. For targets that had harmonic
content, it was noted if the partials present in the target were also represented in
the orchestrated solution. For example: one of the samples of a bell had partials
that loosely represented a C minor chord, so we checked whether the orches-
tration contained the notes of this chord. If a target included specific notes, we
identified whether the note or its partials were present. For example there is a
target of an Oboe playing an A4 and a Bassoon playing a C#3. ResNet’s so-
lution for this target contained the partials of the Bassoon’s note: C#3, G#4,
C#5, and E6 were all included on various instruments in the solution.

For quantitative evaluation, we used the distance metric defined in Eqn. 3
to calculate differences in timbre between targets and solutions. This metric is
proposed in (Cella, 2020) as part of the cost function used in Orchidea during the
optimization. The equation takes in the full amplitude spectrum of the target
x and full amplitude spectrum of the solution x̃. Then for each bin k of the
amplitude spectrum, it calculates the absolute difference between the values.
The differing values of λ1 and λ2 allow the metric to penalize the solution in
different ways.

In the first summation, λ1 is multiplied by all the distances calculated when
there was more energy in the target than the solution, since δk1 = 1 only when
xk ≥ x̃k. Similarly in the second summation, λ2 is multiplied by all the distances
when the solution provided more energy to a frequency than the target. There-
fore, the relation between λ1 and λ2 determines whether a solution is penalized
more for undershooting or overshooting the target.

d(x, x̃) = λ1
∑
k

δk1(xk − x̃k) + λ2
∑
k

δk2|xk − x̃k| (3)

where δk1 = 1 if xk ≥ x̃k, 0 otherwise; and δk2 = 1 if xk < x̃k, 0 otherwise.
We calculated the distance between the target samples and our orchestrated

solutions. We then orchestrated the same targets with Orchidea and calculated
the distance for Orchidea’s solutions. A comparison of these results is in Table 3.

4 Conclusions

While our models are not able to outperform Orchidea, they show consistent
results. During training, CNN and ResNet both perform well, with ResNet
achieving higher training accuracies than CNN. For orchestration, CNN per-
forms quantitatively better with an average ratio of 0.71 compared to ResNet
with an average ratio of 0.66 (see Table 3). Both models outperform Orchidea
on three out of fifteen of the targets. Through our qualitative inspection, we
find that CNN seems to better emulate the timbre in its orchestrations, where
ResNet is better for recreating the harmonic content of the target.

Target-based computer-assisted orchestration through deep learning models
seems a promising path, thanks to the ability of deep networks to classify indi-
vidual instruments and pitches out of dense combinations of samples. This work,

References 13

however, represents only a preliminary study of the potential of these methods
for the task of assisted orchestration.

The first natural extension would be to support sparsity in our models. Our
current models orchestrate all targets using a constant number of instruments
and are not able to drop specific instruments from the solution. This does not
take into account the density of different targets. Sparse solutions, in which the
model decides how many samples should be used to best represent the target,
would allow a small number of samples to be used for sonically sparse sounds
and many to be used for sonically dense sounds. This would generate more
meaningful orchestrations that would compare more favourably to the state of
the art.

Another important extension would be to create a more powerful embedding
spaces for the target and combinations. In (Gillick, Cella, & Bamman, 2019) the
authors propose to use LSTM-based models to predict the embedding features for
the combinations used during the optimisation process in assisted orchestration.
We believe that by combining their prediction model with our classification
models we could generate more faithful representations and improve the overall
quality of generated orchestrations.

Finally, the OrchideaSOL dataset could replace TinySOL as the dataset used.
OrchideaSOL could improve the system by adding extended playing techniques
to the data, which can allow noisier targets to be better orchestrated. Orchidea-
SOL contains 13,265 samples from 14 instruments, almost ten times as many
samples as TinySOL (Cella et al., 2020). This would greatly increase the num-
ber of classes, and therefore the models would need to be trained on more samples
and the number of layers in the models may need to increase.

References

Ariza, C. (2005). Navigating the landscape of computer aided algorithmic com-
position systems: a definition, seven descriptors, and a lexicon of systems
and research. In ICMC.

Benetos, E., Kotti, M., & Kotropoulos, C. (2007). Large scale musical instrument
identification.

Bhardwaj, S. (2017). Audio data augmentation with respect to musical instru-
ment recognition (Master’s thesis). doi: https://doi.org/10.5281/zenodo
.1066137

Bian, W., Wang, J., Zhuang, B., Yang, J., Wang, S., & Xiao, J. (2019). Audio-
based music classification with densenet and data augmentation.

Carpentier, G., Tardieu, D., Harvey, J., Assayag, G., & Saint-James, E. (2010,
03). Predicting timbre features of instrument sound combinations: Appli-
cation to automatic orchestration. Journal of New Music Research, 39 .
doi: 10.1080/09298210903581566

Cella, C.-E. (2020). Orchidea: a comprehensive framework for target-based
assisted orchestration. submitted to Journal of New Music Research, under
review .

Cella, C.-E., & Esling, P. (2018). Open-source modular toolbox for computer-
aided orchestration. In Timbre conference.

14 Carmine Emanuele Cella et al.

Cella, C. E., Ghisi, D., Lostanlen, V., Lévy, F., Fineberg, J., & Maresz, Y.
(2020). Orchideasol: a dataset of extended instrumental techniques for
computer-aided orchestration. In ICMC.

Fernandez, J., & Vico, F. (2013, Nov). Ai methods in algorithmic composition:
A comprehensive survey. Journal of Artificial Intelligence Research, 48 ,
513–582. Retrieved from http://dx.doi.org/10.1613/jair.3908 doi:
10.1613/jair.3908

Gillick, J., Cella, C.-E., & Bamman, D. (2019). Estimating unobserved audio
features for target-based orchestration. In Ismir.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image
recognition. In Ieee conference on computer vision and pattern recognition
(CVPR).

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore,
R. C., . . . Wilson, K. (2016). CNN architectures for large-scale audio
classification.

Hochreiter, S., & Schmidhuber, J. (1997, November). Long short-term memory.
Neural Comput., 9 (8), 1735–1780. Retrieved from https://doi.org/10
.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735

Kitahara, T., Goto, M., & Okuno, H. G. (2005). Pitch-dependent identification
of musical instrument sounds.

Lostanlen, V., & Cella, C.-E. (2016). Deep convolutional networks on the pitch
spiral for musical instrument recognition.

Maresz, Y. (2013, 02). On computer-assisted orchestration. Contemporary Music
Review , 32 . doi: 10.1080/07494467.2013.774515

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., &
Nieto, O. (2015). librosa: Audio and music signal analysis in python. In
Scipy.

Mckinney, M., & Breebaart, J. (2003). Features for audio and music classifica-
tion. In Proceedings of the international symposium on music information
retrieval (pp. 151–158).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12 , 2825–2830.

Salamon, J., & Bello, J. P. (2017, Mar). Deep convolutional neural networks
and data augmentation for environmental sound classification. IEEE Signal
Processing Letters, 24 (3), 279–283. Retrieved from http://dx.doi.org/
10.1109/LSP.2017.2657381 doi: 10.1109/lsp.2017.2657381

http://dx.doi.org/10.1613/jair.3908
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/LSP.2017.2657381
http://dx.doi.org/10.1109/LSP.2017.2657381

	Neural Models for Target-Based Computer-Assisted Musical Orchestration: A Preliminary Study
	Introduction
	Neural models
	From Classification to Orchestration
	Dataset
	Data Augmentation
	Baselines
	CNN with LSTM
	ResNet
	Classification Results

	Orchestration Experiments
	Evaluation

	Conclusions
	References

