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Abstract. Current interactive music systems for human-machine impro-
visation often employ sophisticated machine learning algorithms, achieving
competence in style imitation and interaction with human performers
within defined musical domains. However, in the context of free musical
improvisation, it is probably not desirable to interact with a musical
partner which one can largely anticipate or predict, because this might
hinder the critical re-examination of one’s improvisational practice, to
the detriment of an open-endedness that is crucial in this particular form
of musical expression. The author’s contention is that, just as one would
strive to collaborate with highly original and diverse musical personalities
when freely improvising, a similar scenario would be desirable when collab-
orating with a computer system. By settling for “good enough” solutions
to the problems posed by the design of the latter, and negotiating expec-
tations of the attainable, a more unpredictable and contradictory agent
might arise. In this article, the author’s system’s conceptual framework,
design and an evaluation of three performances using it are presented.

Keywords: Computational Creativity, Human-machine Improvisation,
Subsumption Architecture.

1 Introduction

The primary goal of the author is a system aimed at real-performance envi-
ronments, where a free improvising musician interacts with a computational
collaborator as a duet, during which the musician feels sufficiently engaged and
stimulated in the musical interaction. While there exist many systems employing
sophisticated methods such as artificial neural networks and deep learning archi-
tectures (Bretan et al., 2017; Eck & Schmidhuber, 2002; Hadjeres et al., 2017;
Hutchings & McCormack, 2017; Mehri et al., 2016), the author considers here
simple, unbaked and perhaps even naive solutions to musical problems so long as
they meet his aspiration level, as he leans towards a satisficing1 approach (Simon,
1956). The author aims to show that, by reducing the problem-solving scope of a
system via specific design choices (e.g., methods for representing and generating
musical input/output), an engaging musical agent might surface, appearing to

1 A combination of “satisfying” and “sufficing”.
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negotiate between contradictory goals (i.e., reacting versus learning). While
endorsing approaches that consider improvising computer systems decoupled
from anthropomorphising desires and analogies (Bown, 2015; Lewis, 2000; Linson
et al., 2015), the author’s claim is that one would want to collaborate with some-
one/something that is sufficiently different yet sufficiently similar. Paradoxically,
accepting “to go only part of the way towards satisfying a given value” (Cook,
1994, p. 7), which can translate to rough-hewn strategies and moderate search in
problem-solving, might seemingly produce such a contradiction.

In this article, the author presents Dory, an interactive system for human-
machine musical improvisation which is an example of employing satisficing
methods and design, where “the search is for sufficient, not necessary, actions
for attaining goals” (Simon, 1996, p. 124). After describing the motivations
behind this endeavour, the context and the system design of Dory, the author
evaluates this computational improviser with respect to three public performances.
This suggest that Dory is best appreciated if considered in its own right as a
computational collaborator, whereby it is no longer “technology or computers at
all, but musicality itself” (Lewis, 1999, p. 110).

2 Frame

Computer systems that are able autonomously to interact musically with human
performers are sometimes referred to as live algorithms (Blackwell et al., 2012), or
interactive music systems in a player-paradigm (Rowe, 1992a). These autonomous
musical agents are not devoid of the assumptions and beliefs of their makers, and
are likely to reflect them in the way they are designed and operate. There is a
rich legacy of music practitioners who have engaged with the task of designing,
implementing and performing with such systems, and the one presented here is
the author’s contribution to this legacy. In particular, Dory is situated in the
context of those systems (Hsu, 2008; Lewis, 2000; Linson et al., 2015) that are
developed to perform freely improvised music which, according to some of its
founders, it is meant to represent unbound ex-novo musical creation, devoid of
formal structuralism and idiomatic rules. While claims of having no vernacular
in terms of melodic, harmonic and rhythmic structures might be unrealistic,
because every repeated artistic and aesthetic practice eventually leads to some
formalisation, “much of the impetus towards free improvisation came from the
questioning of musical language. Or more correctly, the questioning of the ‘rules’
governing musical language” (Bailey, 1993, p. 84). More specifically, the author
is interested in those systems that are not under player control, meaning that the
human performer has no access to the internal parameters during performance.

Since the musical domain for which Dory is intended has no formal rules in
terms of structures or idiom, the author’s design was freed from considerations
regarding high-level representations of music. These could include embedding mu-
sical knowledge or rules regarding melody, harmony and rhythm, as well as formal
structures such as bars, musical phrasing, periods, hierarchical relationships and
thematic development, for example. Such representations would be paramount for
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other systems aimed at style imitation, which would normally be trained exten-
sively over large corpora, leading to a peculiar scenario where the machine might
well have “listened” to more music than its human collaborator. Furthermore,
those systems often consider a wide range of options before committing to a
musical decision, perhaps solving complex optimisation and inferential problems,
and finding the best possible path or sequence given the data available. Not only
are these unrealistic characteristics for a human improviser, who is too slow to do
exhaustive systematic search, but it is perhaps even undesirable to collaborate
with a musical agent which is infinitely competent, has memory of an arbitrarily
large corpus, and is able to actuate the best response to a given problem. In
other words, “it might be intrinsically rational not to seek, and to be satisfied
with some ‘aspiration level’ of results less than the achievable best” (Slote, 2004,
p. 28). Settling for coarse and rough-hewn strategies might, for example, help
draw analogies with non-rational characteristics of human decision-making.

Naturalistic decision-making (NDM) studies (Klein et al., 1993) have shown
that, under time and pressure constraints, humans are likely to opt for a “good
enough” solution. This is akin to the concept of bounded rationality, first in-
troduced by Herbert Simon (1956), who also coined the term satisficing. These
ideas posit that, providing that one can define a minimum threshold with respect
to given needs, the first solution that meets such criterion is that chosen. This
threshold has been referred to as aspiration level, comparing the “expectations of
the attainable . . . with the current level of achievement” (Simon, 1996, p. 30).
Speculatively borrowing from this theory, the author’s aspiration levels were
defined by several factors which are thought to be crucial in determining the
appreciation and/or success of human-machine musical interaction. According
to widespread opinions (Brown et al., 2017; Hsu & Sosnick, 2009; Peters et al.,
2009), a system in this context should be: responsive, stimulating, engaging and
surprising. While the first two factors will be considered exclusively in the context
of the performer’s perspective (see Section 4.3), the last two were also used as
measures of the audience response (see Section 4.2).

A satisficing approach was also applied to the methods and the design of
Dory. In particular, acceptable rather than best possible solutions were adopted
with respect to the system’s faculty of listening and learning. By these terms
the author specifically refers to machine listening and machine learning, respec-
tively. Concretely, Dory is designed to listen and process incoming raw audio
instead of MIDI information, while completely disregarding source separation
and polyphonic input issues. A more detailed discussion is deferred to Section
3.2. As a counter-example, one could imagine systems such as Cypher (Rowe,
1992b), which has an extremely accomplished listener module. This is achieved
partly due to the fact that the incoming information is provided in MIDI for-
mat, thus presenting little, if any, room for ambiguity. Furthermore, Dory is
unable to learn extensively or train from corpora or live input, due to its short
memory affordance. This deliberate design feature arose from speculations on
how short-term memory reflects on improvisation (Moorman & Miner, 1988),
and it is explained more in depth in Section 3.3. A contrasting example of an
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accomplished learner would be Pachet’s Continuator (2003). Dory is thus liable
to an arbitrarily fuzzy recognition of the “world” and musical misinterpretations
of the human co-improviser(s). While these properties might seem at odds with
a coherent musical output, writer and musician Rob Wallace reminds us that “a
more nuanced view of improvisation reveals . . . a constantly negotiated frame-
work of sometimes contradictory possibilities” (2010, p. 34). To understand better
how Dory ’s behaviour emerges from the symbiosis of contradictory possibilities,
it is crucial firstly to account for some important design considerations.

3 System Design

Although a thorough discussion regarding common design strategies is beyond the
scope of this article, it is important to identify some essential design factors that
can provide a compact description of computational musical collaborators. This
can be particularly useful for comparing different systems or different versions of
the same system, for example. The factors that can more succinctly illustrate
what specific choices were made in the design of Dory are the architecture, the
type of input/output, the model type, and the methods used to generate musical
material.

Architecture relates to how the system is built. Examples could be multi-
agent architectures that simulate swarm intelligence (Blackwell, 2007) or complex
interaction of independent music bots (Eigenfeldt et al., 2015). Input/output
simply describes what data type the system is reading/processing and generating.
The model type specifies whether the system is able to learn from a corpus, live
input or both (Assayag et al., 2006; Hadjeres et al., 2017; Pachet, 2003; Young,
2008), whether it draws on embedded musical knowledge (Rowe, 1992b), or
whether it is instead reactive (Bown et al., 2014; Lewis, 2000) or reflexive (Pachet
et al., 2013; Weinberg et al., 2008). In other words, the model type is closely related
to the motivations of the system designer. Methods used to generate musical
output are diverse, including grammar-based (Gillick et al., 2010), L-systems
(McCormack, 2003), knowledge-based and self-organising maps (SOM) (Rowe,
1992b), artificial neural networks (Manzolli & Verschure, 2005), evolutionary
algorithms (Biles, 2002; Weinberg et al., 2008), and Markov processes (Wang
et al., 2016). For a comprehensive review of algorithmic methods, the reader is
encouraged to consult recent surveys (Fernández & Vico, 2013; Herremans et
al., 2017). Armed with these four definitions, it is now possible to describe Dory
accordingly.

3.1 Architecture

Dory is built following a distributive and parallel control design, whereby different
modules can be activated concurrently, thus negotiating different levels of agency.
It is rooted in Rodney Brooks’ (1999) stance, which stands in opposition to
emulating symbolic reasoning and mental representations. This challenged the up-
to-then dominant model of the sense-plan-act (SPA) strategy for implementing
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AI systems by entirely removing the plan stage. In the early 1990s Brooks
argued for a sensory-motor coupling with the environment, connecting limited
task-specific perception directly to required actions, and he built several robots
following this radical approach, employing a decentralised network of interaction
between simple modules (akin to agents, in Marvin Minsky’s terminology (1986)).
This architecture is referred to as subsumption and inspired a wealth of later
experiments (Hasslacher & Tilden, 1995; Quigley et al., 2009). Subsumption
is based on a few key concepts, such as situatedness (whereby the world is its
own best model), embodiment (having a concrete, integrated physical control
system, with direct coupling of sensor data to actions), intelligence as a by-
product of bottom-up approaches (mobility, locomotion and perception are the
first foundations of intelligence), and emergence (systemic behaviours arise from
the interaction of smaller local entities). In such systems the inputs and outputs
to/from the modules can be inhibited or suppressed depending on whether the
signals are, respectively, blocked or replaced between layers. These modules
operate in parallel and guarantee that the system will always function at some
level. It is understood that higher levels subsume lower ones. For example, in
Brooks’ robots the lowest operational level would be “avoid obstacles” and a
higher one could be “move towards target”.

Studies related to dynamical systems and embodied cognition (Chemero, 2009;
Clark, 1996), some of which have parallels in music (Borgo, 2005; Di Scipio, 2003),
might exhibit similarities to Brooks’ approach, due to the connectionist model
underlying them and to the shifted focus towards distributed, multidimensional,
local and action-oriented representation, as opposed to being objective and
action-independent. In terms of notable precedents in employing a subsumption
architecture in the context of human-machine musical interaction, the work of
Linson (Linson et al., 2015) stands out. When translating Brooks’ concepts to
a musical system, bespoke choices were made for Dory. The author’s system
comprises 7 modules, with listen being the lowest level of operation (discussed in
Section 3.2). A schema of Dory ’s architecture can be seen in Fig. 1.

Two of these modules (follow and remember) explicate memory functions,
while two others (feel and create) are responsible for more reactive traits of the
system (these will be discussed in Section 3.3). A more in-depth flow diagram
of Dory ’s architecture is shown in Fig. 2. The next system characteristic to be
described relates to how it receives and outputs signals.

3.2 I/O

For accurate modelling of incoming musical information, many systems tend to
be designed to accept input as MIDI data. Furthermore, some impose further
restrictions in this sense, and are optimised to deal with monophonic instruments
(Biles, 2002). These strategies ensure that segmentation and representation can
eventually reflect the input to a high degree of accuracy. Dory, by contrast, has no
such strategies. Not only is it unconcerned with polyphony, but it is also designed
to accept direct audio from the musician’s instrument or the environment. Such
a deliberate approach produces a considerable level of error in the representation
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Figure 1. A subsumption architecture. Modules/layers are activated in parallel and
each connects the input to the output. Adapted from Brooks (1999, p. 67).

of the live audio input, further compromising Dory ’s already partial learning
capabilities (discussed in Section 3.3).

In the input module, raw audio from the human player is received and a
simple averaging of the peak amplitude over three time windows (2500ms, 5000ms
and 7500ms) with respect to a sensitivity hyper-parameter is computed, as a
list of three binary values (e.g., 0 0 1). This list is a measure of how “busy” the
human player is, sonically. If no activity is detected within 7500ms then Dory
hibernates and the output module is inhibited. The binary lists so obtained are
used to determine which of two finite state machines (FSMs) should be queried.
These FSMs are in charge of deciding the activation state for create/follow and
feel/remember, respectively (discussed in Section 3.3). The transition weights can
be adjusted, to confer a more or less reactive or learning personality to Dory.
However, this can only be done offline, and once the system is operational, the
human performer no longer has control over these weights.

The audio input is then fed to the listen module, where it is analysed and
decomposed into three data streams, relating to pitch information, amplitude and
time deltas between notes detected. This is done by estimating the fundamental
frequency of the incoming audio by performing multiple layers of wavelet transform
on an incoming vector, comparing the spacing between the peak in each. The
peak amplitude is converted to a range of 0–127, used as MIDI velocity values.
Similarly, pitch values are also converted to MIDI notes. As for the time deltas
between the notes, these are calculated simply as the time elapsed between
two consecutively detected onsets. The information so obtained will populate
the corresponding transition matrices of the Markov chains in the follow and
remember modules (see Section 3.3). The object that performs this analysis
(part of the standard distribution of the software2 used to implement Dory)
is specifically optimised for monophonic signals. This specification is, however,

2 Max ; at https://cycling74.com.
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Figure 2. Dory ’s flow diagram. Modules are represented by named boxes and solid
lines represent the data flow. Clearly visible are the two FSMs discussed in Section 3.2,
determining which module(s) will be activated/inhibited.

purposively disregarded when Dory is playing with a human using a polyphonic
instrument, resulting in an arbitrarily approximate and incorrect representation
of the incoming audio. Additionally, the incoming audio’s tempo is estimated
via a real-time beat-tracking model (Stark et al., 2009), and the chroma set3 is
calculated (Stark & Plumbley, 2009). This information is then used in the feel
and create units (see Section 3.3).

The type of output that Dory produces is in MIDI format which can be sent
to an external instrument (hardware or software) of the user’s choice. Thus, Dory
does not have the means to generate actual sounds, but only data streams. This
strategy is common amongst system designers, because it frees them from choices
relating to sounds which could become aesthetically obsolete or historically bound.
In doing so, a much wider palette of sounds is made available to the human
improviser, who might choose different “players” for different performances or
occasions. Once again, this choice can only be made before the system is activated,
after which point it is no longer possible to change Dory ’s output sound. The
next characteristics to be considered will be the system’s model type and the
methods used to generate MIDI output.

3 The circular organisation of the pitch classes in twelve-tone equal temperament.



8 Stefano Kalonaris

3.3 Model Type and Methods

Dory can be said to be both reactive and learning, albeit unable to commit to
one or the other. This is a result of the system’s architecture, as seen in Section
3.1.

The reactive aspect of Dory ’s behaviour is obtained via the activation of the
two modules named create and feel, which generate streams relative to pitch, time
deltas between notes, amplitude and duration of the notes. This process is largely
based on statistical distribution sampling, coupled with rhythmic subdivision
based on the detected tempo. These two modules are similar, except that feel
computes an arbitrarily long averaging over incoming note speeds, chroma content
and detected tempo. The time window over which these are calculated is the
time between the last and the current activation of the module itself. The create
module, by contrast, does no averaging and simply computes the same elements
as a running stream. In both modules, the duration and amplitude of the notes
are pooled from an arbitrary distribution.

The learning side of the system is realised via Markov processes and is also
implemented according to two different time scales, reflecting considerations
made in an earlier paper by the author (Kalonaris, 2017), where a model of
memory theorised by Tulving (1972) was considered (shown in Fig. 3). Following
studies that have shown a positive correlation between declarative memory and
high novelty (but low speed) in music improvisation (Moorman & Miner, 1988),
a case was then made for implementing Dory with a partial learning goal, using
only two short bins of memory which represented the workings of short-term and
episodic memory in the Tulving model. This choice was further supported by the
findings of Huron (2006) and Snyder (2000).

Figure 3. Tulving’s (1972) memory model, hypothesising two kinds of long-term
memory: declarative and procedural. While the latter is associated with implicit and
subconscious recall, the former is responsible for conscious and intentional recall, and it
is thought to be further divided into semantic and episodic memory.
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Data regarding pitch, amplitude and time delta received from the listen module
(described in Section 3.2) is used to populate three corresponding transition
matrices, in either a short memory module (follow) or a longer one (remember,
representing episodic memory). The former is wiped every time the module
is not active, during which period the transition matrix is filled with the new
incoming streams. The latter was originally implemented to run for the duration
of the performance, but its length can be heuristically reduced by the human
performer, similarly to the sensitivity hyper-parameter (see Section 3.2) . When
either module is active (i.e., when their output is not inhibited) second-order
Markov chains are queried for the next values to be sent to the output module.

As a result of this limited memory affordance, Dory is incapable of learning
over a real-time corpus, which explains the system’s inability to model the
human collaborator’s musical language. However, some local and time-sensitive
characteristics might at times be reflected in the output of the system. In other
words, Dory might occasionally and briefly elaborate on musical material derived
from its human collaborator, or even from the environment around it (if audio is
acquired via a microphone). Adding to the reduced ability to learn extensively
is the fact that what the system feeds to the two memory bins might already
be spurious and compromised to some degree, due to the flaws of the listen
module (see Section 3.2). Having described the anatomy and design philosophy
of Dory, the preliminary results of the author’s experiments in real-performance
environments with the system are now presented.

4 Evaluation

Evaluation of computationally creative music systems poses many problems
and it is an open discourse voicing many perspectives, trends and approaches.
In the context of autonomous musical agents such as those described in this
article, one can identify a “first wave” of such systems which were eminently
practice-based and whose designers were not perhaps particularly concerned
with formal evaluation methodologies. A later stage saw attempts to evaluate
these systems with tests inspired by the Imitation Game (Turing, 1950). These
comprised Musical Directive Toy Tests (MDtTs), Musical Output Toy Tests
(MOtTs) and Discrimination Tests (DTs), for example, although there seems to
be a consensus that such tests seem to fall short of being able to say anything
about the intelligence or creativity of the systems (Ariza, 2009) or about the
aesthetic and artistic results. At best, they end up being measures of musical
judgement. At times the need for evaluation has been challenged altogether,
because “what purpose would be satisfied by creating qualitative criteria or
quantitative metrics for artificial musical intelligence, given the lack of successful
similar criteria for natural musical intelligence, musicality, or even music per se?”
(Belgum et al., 1988, p. 9).

It would, however, be undesirable to lack completely the possibility to compare
systems, thus being able incrementally to improve knowledge in the domain and
build on the existing legacy. While some practitioners seem to be leaning towards
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qualitative methods (Banerji, 2012; Bown, 2015), others are more inclined towards
a mixture comprising both quantitative and qualitative measures (Stowell et al.,
2009), with Human Computer Interaction (HCI) criteria also being common in
this context (Hsu & Sosnick, 2009). Not only have attempts been made to design
standardised procedures for comparing systems (Colton, Charnley, & Pease, 2011;
Jordanous, 2012), but some also argue for the formal evaluation of different
versions of the same system (Colton et al., 2014).

Dory is currently being developed, and a formal evaluation procedure has
yet to be designed. The author shares many of the preoccupations presented
above, and although he has not yet designed a rigorous evaluation method, he has
attempted some preliminary evaluation of three public performances with Dory.
It is important to note that he argues for systems designed for real-performance
environment with experienced practitioners, much in accordance with other
researchers’ views (Bown, 2015; Lewis, 2000; Linson et al., 2015; Hsu & Sosnick,
2009).

4.1 Methodology

Dory was used by the author in three performances, which took place at the
Improvisational Creativity Workshop, Prato, July 20, 2017; at the 2nd Conference
on Computer Simulation of Musical Creativity, Milton Keynes, September 13,
2017; and at the New River Studios, London, October 25, 2017. These were all
scenarios where a rigorous, formal evaluation may have not been appropriate
(concert environment, low response rate, etc.), however, both a quantitative study
of the audience response and a descriptive analysis from the performer’s point of
view are provided. The former relates to the first two performances, whereas the
latter is cumulative over all three.

4.2 The Audience’s Perspective

Evaluation methods for creative systems have been divided into methods of
external and internal evaluation (Agres et al., 2016). Amongst the former, both
questionnaires and correlation tests feature as valid options. In particular, it is
argued that Likert rating scales, although subjective, “can provide very robust
and consistent measures” (Agres et al., 2016, p. 17). Given the context (a real-
performance environment) and the above consideration, a simple questionnaire
was used. This consisted of only three items:

– I enjoyed the performance (measure of enjoyment)
– The musical interaction was sufficiently engaging (measure of engagement)
– Dory sometimes responded in unexpected ways (measure of surprise)

A ten-point Likert scale ranging from “strongly disagree” to “strongly agree”
(re-coded 1–10) was used to quantify the audience response. As already noted,
engagement and surprise are, within the computational creativity community,
consensually agreed upon as important factors in the evaluation/determination
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of a system’s creative ability. Therefore, these two measures were used for the
second and third questionnaire items, respectively, whereas the first item is asking
whether both the interaction between the human performer and the system,
and the resulting musical output, were considered aesthetically effective and/or
pleasing. Audience members were all domain experts and they were participants
of the two events (July 20 and September 13, 2017), either presenting papers on
creative computational systems or performing as part of the concerts. Amongst
them, some of the most eminent practitioners of human-machine improvisation
were present. One of them provided written feedback in a private email. In total,
only 9 participants responded.

Mean and median values for all three items were very high, as seen in Tab. 1.
Despite a strong positive correlation between enjoyment and engagement, a chi
square test of independence showed that the relation between these two variables
was not significant.

Enjoyment Engagement Surprise
Min 7 5 7

1st Qu. 8 8 9
Median 8 8 9

Mean 8.3 7.7 9.0
3rd Qu. 9 8 10

Max 10 10 10

Enjoyment Engagement Surprise
Enjoyment 1.0 0.77 -0.17

Engagement 0.77 1.0 0.0
Surprise -0.17 0.0 1.0

Table 1. Basic descriptive statistics (left) and correlation matrix (right) for N=9
participants in 2 different performances, answering three questions using a 1–10 Likert
scale.

Some of the respondents volunteered comments and suggestions, some of which
indicated a high level of surprise (reflected in Tab. 1):

It surprised me in many ways – perhaps some graphical interaction with
audience could help as Dory makes (her/his/its) decisions.

At other times a sense of wonder, considered “intimately connected with creativity”
(Boden, 2003, p. 277), was expressed:

It was difficult for me to get into your abstract communication with the
program – and that is maybe a good sign that things are not too obvious.

Some comments also highlighted the short-term feedback of musical material
between the author and the system:

I found a couple of central notes from you and Dory, that kept coming
back and heard you taking over ideas from Dory – my favourite moments.

Given the small number of respondents and the lack of a robust survey design
method, the above results should be interpreted with caution and complemented
with a performer study.
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4.3 The Performer’s Perspective

The author is a guitarist and electronic musician experienced in free improvised
music. It has been claimed that “expert qualitative analysis should be recognised
as fulfilling an essential role” (Linson et al., 2012, p. 148) in evaluating musical
improvisations, therefore, despite the bias of the author being both the designer
and the performer, a descriptive study is now offered. The standpoint of the
following reflection is that of a practice-based approach, in full awareness that it
might make more sense to consider it as instrumental to future implementations
of the system. Dory was designed to achieve stimulating and engaging interac-
tions with the human by freely improvising musical duets. Studies on creative
partnership in human-machine musical improvisation (Brown et al., 2013, 2017)
have identified some essential activities and relationships in a duet interaction.
These are:

– initiate (new material)
– imitate (reuse of other’s material)
– loop (immediate reuse of own material)
– restate (reuse of other’s material over a longer time span)
– shadow (play in unison or close parallel)
– silence (not playing)

Such activities are intrinsically bound to the factors identified in Section 2 (i.e.,
that a system should be responsive, stimulating, engaging and surprising), and
are discussed in relation to these. For example, initiating new or contrasting
material, as well as not playing at times, is related to how the performer perceives
the system in terms of being stimulating, engaging and surprising, while the
capacity to imitate might be more associated with the responsiveness of the
system.

Dory ’s ability to initiate musical material, at times in discordance with the
human performer’s musical behaviour, can be seen in Fig. 4. In this case, Dory
starts with a new figuration in (perceived) quavers and a strong tonal centre of
D minor, following a few seconds of silence observed by both the system and the
author. Despite the variety of the author’s response (firstly doubling the rhythmic
figurations, then introducing bursts of four-note chordal support for Dory ’s lines),
the system did not stray from its musical direction. This characteristic is often
much appreciated and sought-after when improvising, particularly in a duet.
Another way to interpret it is as the ability to stray from reflexive interaction
by means of either ‘stick to your own’ or introducing a contrastive musical idea.
An example of the latter behaviour is illustrated in Fig. 5, where, after a short
interchange of syncopated phrasing, Dory picked the perceived tonic and held it
for a few seconds. Naturally, this provided an ideal opportunity for the author to
change the texture of his musical ideas, as the music seemed quickly to transition
to a low-energy state, allowing for more meditative ideas to emerge. At other
times, similar behaviours of Dory elicited instead a different reaction in the
author, whereby he gained the foreground and used fast divisions and/or complex
ideas on top of Dory ’s static and persistent counterpart.
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Figure 4. An example of Dory ’s ability to initiate a musical idea independently from
the material played by the author.

These musical behaviours make for engaging interactions and the author, after
an initial period of familiarisation, was able to negotiate his expectations relating
to the system and accept Dory as an active element of the musical experience.
While relinquishing ideas of humanised behaviours, the author did not perceive
Dory simply as a “prop” or as a device/strategy for augmenting the sonic palette
of the performance but, rather, as a fully fledged agent which contributed to it on
an equal footing. He regarded the system as stimulating and engaging, because
it helped him focus on musical interactions at a purely sonic level (given that
Dory lacks a physical dimension). This perception was shared by some of the
audience members, as shown in the following remark:

I had to focus more on the listening as there was no performer to look at.

Due to the idiosyncratic behaviours of the system, the author was prompted to
examine some of his preconceptions about interactivity in music improvisation
and to adopt an attentive listening approach. According to some influential
practitioners (Corbett, 2016; Solomon, 1986), rote imitation and polarisation
can be problematic in free improvisation, resulting in predictable, concerted
patterns of arousal and decay of musical energy. Dory ’s lack of pure imitation
was not a result of accomplished musicianship and years of experience in free
musical improvisation, but was rather hardcoded in by virtue of the already
discussed design features. Nevertheless, the system was able to exhibit short-
range imitative traits that at times resulted in subtle interaction showing both
harmonic and mood integrity, as can be seen in Fig. 6. On this occasion, during
the third performance of the author with the system, the music maintained a
strong pivot of C mixolydian. Dory ’s long notes provided the author with the
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Figure 5. An example of Dory ’s ability to produce and maintain diverging musical
ideas.

opportunity for a harmonic commentary, where he adopted a supportive role,
as well as trading short melodic interventions at times. The author was able to
experiment with dynamics, which allowed him to perform solo for brief moments.
Such an affordance is contingent upon Dory ’s sensitivity hyper-parameter, which
sets an amplitude threshold for incoming audio below which even the listen
module is suppressed (see Section 3.2). This particular behaviour is referred to
as silence in the crucial factors of a duet interaction listed at the beginning of
this section. The sonic texture need not be congested at all times and, in fact,
the author appreciated the opportunity to “prune” the density of the music at
times. Although this resulted from a design feature of the system, it was still felt
and perceived in terms of a positive musical affordance, in the context of the
performances. This behaviour is illustrated in Fig. 7.

5 Discussion

Despite the many positive qualities of Dory ’s behaviour, the author also experi-
enced some evident shortcomings. For example, the ability to produce entrainment,
musical synergy and to deliberately sustain musical interaction is also crucial in
a creative duet, since novelty and heterogeneity might not be sufficient to engage
a human performer musically and aesthetically over a longer time span. In this
sense, the system did not exhibit such capability. This lack of long-term structure
and entrainment has also been noticed by improvisers in relation to other similar
systems (Bown, 2015) and suggests that more can be done in the context of
reactive systems with limited or no learning capabilities. Other shortcoming of
the author’s system were the lack of three of the activities listed at the beginning
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Figure 6. An example of musical imitation between Dory and the author, with a C
mixolydian modal anchor.

Figure 7. An example of sparse interaction and use of silence on the part of Dory.

of Section 4.3, namely loop, restate and shadow. To address these issues, several
strategies could be employed. Regarding entrainment and the immediate reuse of
its own material, the system could, for example, be augmented with closed-loop
(feedback) methods which could be triggered with respect to the level of metric or
chroma consistency detected in the human player. However, since rote imitation
and parroting can be equally undesirable in music improvisation (see Section 4.3),
such affordance should be carefully implemented. Perhaps this could be done
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by including some mechanism for simulating creative divergence, along the lines
of that discussed already (i.e, contrastive ideas; see Fig. 5), in order to escape
loops seemingly by the system’s initiative. To achieve the ability to restate it
would be sufficient to stretch the memory length of the remember module and/or
to alter the weights of the FSMs (see Section 3.2) to make the transitions to
the long-term memory more probable. Another strategy would be to use more
sophisticated algorithms for the Markov processes, for example Factor Oracle
(Assayag & Dubnov, 2004). Such alterations would, however, be in stark contrast
to the initial motivations behind Dory and, therefore, inappropriate for this
particular system.

6 Conclusion

Dory was developed to be used for pairwise musical interaction and for freely
improvised music, in real-performance environments. While it is tempting to
desire human-like attributes in computational systems for music improvisation,
it is important to negotiate these expectations with the awareness that these
idiosyncratic systems might be better employed when they are granted bespoke
status. By maintaining an open approach to performing with these systems, the
human performer might not only learn dynamical couplings with the system,
but might also be presented with opportunities for a critical re-examination of
his/her improvisational and creative practices.

Dory set out to represent an example of satisficing design and of purposively
reduced scope on several fronts. These choices were made following specific
considerations regarding memory, perception and decision-making, and were
realised via coarse machine listening and learning modules, as well as naturally
emerging from the system’s architecture. The latter was such that Dory lacked
a concept of “planning”, relying instead on distributed and parallel control
and agency. Despite the limitation of the current implementation, such as the
inability to sustain long-term musical interaction, Dory was received positively by
expert audiences and by the human player alike, and it was deemed an engaging
musical agent, exhibiting novel and idiosyncratic behaviours. These encouraging
preliminary results warrant further exploration in this direction and the author
intends to develop more formal methodologies for evaluating the system as well
as strategies for attaining long-term capabilities that could perhaps simulate the
desire to adapt to shared musical goals.
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México City. Retrieved from http://computationalcreativity.net/

iccc2011/proceedings/the foundational/colton 1 iccc11.pdf

Colton, S., Pease, A., Corneli, J., & Cook, M. (2014). Assessing progress in
building autonomously creative systems. In International Conference on
Computational Creativity (pp. 137–145).

Cook, J. (1994). Agent reflection in an intelligent learning environment architec-
ture for musical composition. In M. Smith, A. Smaill, & G. A. Wiggins
(Eds.), Music education: An artificial intelligence approach (pp. 3–23).
London: Springer.

Corbett, J. (2016). A listener’s guide to free improvisation. Chicago, IL:
University of Chicago Press.

Di Scipio, A. (2003). ‘Sound is the interface’: From interactive to ecosys-
temic signal processing. Organised Sound , 8 (3), 269–277. doi: 10.1017/
S1355771803000244

Eck, D., & Schmidhuber, J. (2002). Finding temporal structure in music: Blues
improvisation with LSTM recurrent networks. In Proceedings of the 12th
IEEE Workshop on Neural Networks for Signal Processing (pp. 747–756).
Martigny, Switzerland: IEEE. doi: 10.1109/NNSP.2002.1030094

Eigenfeldt, A., Bown, O., & Casey, B. (2015). Collaborative composition with
creative systems: Reflections on the first musebot ensemble. In H. Toivonen,
S. Colton, M. Cook, & D. Ventura (Eds.), Proceedings of the International
Conference on Computational Creativity (pp. 134–141). Park City, UT:
Brigham Young University.

Fernández, J. D., & Vico, F. (2013). AI methods in algorithmic composition: A
comprehensive survey. Journal of Artificial Intelligence Research, 48 (1),
513–582.

Gillick, J., Tang, K., & Keller, R. M. (2010). Machine learning of jazz grammars.
Computer Music Journal , 34 (3), 56–66. doi: 10.1162/COMJ a 00006



References 19

Hadjeres, G., Pachet, F., & Nielsen, F. (2017). DeepBach: a steerable model for
Bach chorales generation. In D. Precup & Y. W. Teh (Eds.), Proceedings
of the 34th International Conference on Machine Learning (pp. 1362–1371).
Sydney, Australia: PMLR.

Hasslacher, B., & Tilden, M. W. (1995). Living machines. Robotics and
Autonomous Systems, 15 (1–2), 143–169.

Herremans, D., Chuan, C., & Chew, E. (2017). A functional taxonomy of music
generation systems. ACM Compututing Surveys, 50 (5), 69:1–69:30. doi:
10.1145/3108242

Hsu, W. (2008). Two approaches for interaction management in timbre-aware
improvisation systems. In Proceedings of the International Computer
Music Conference. Belfast: International Computer Music Association.
Retrieved from https://quod.lib.umich.edu/cgi/p/pod/dod-idx/

two-approaches-for-interaction-management-in-timbre-aware.pdf

?c=icmc;idno=bbp2372.2008.062;format=pdf

Hsu, W., & Sosnick, M. (2009). Evaluating interactive music systems: An HCI
approach. In Proceedings of the International Conference on New Interfaces
for Musical Expression (pp. 25–28). Pittsburgh, PA.

Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation.
Cambridge, MA: MIT Press. doi: 10.1525/mp.2007.24.5.511

Hutchings, P., & McCormack, J. (2017). Using autonomous agents to improvise
music compositions in real-time. In J. Correia, V. Ciesielski, & A. Liapis
(Eds.), Computational intelligence in music, sound, art and design (pp.
114–127). Cham: Springer International Publishing.

Jordanous, A. (2012, 01). A standardised procedure for evaluating creative
systems: Computational creativity evaluation based on what it is to be
creative. Cognitive Computation, 4 (3), 246–279. doi: 10.1007/s12559-012
-9156-1

Kalonaris, S. (2017). Dory : A purposively flawed and forgetful artificial musical
agent. In R. Laney (Ed.), Proceedings of the 2nd Conference on Computer
Simulation of Musical Creativity. Milton Keynes, UK: Open University.

Klein, G. A., Orasanu, J. M., & Calderwood, R. (1993). Decision making in
action: Models and methods. Norwood, NJ: Ablex Publishing Corporation.

Lewis, G. E. (1999). Interacting with latter-day musical automata. Contemporary
Music Review , 18 (3), 99–112. doi: 10.1080/07494469900640381

Lewis, G. E. (2000). Too many notes: Computers, complexity and culture
in Voyager. Leonardo Music Journal , 10 (2000), 33–39. doi: 10.1162/
096112100570585

Linson, A., Dobbyn, C., & Laney, R. (2012). Critical issues in evaluating freely
improvising interactive music systems. In M. L. Maher, K. Hammond,
A. Pease, R. P. Pérez, D. Ventura, & G. Wiggins (Eds.), International
Conference on Computational Creativity (pp. 145–149). Dublin: University
College Dublin.

Linson, A., Dobbyn, C., Lewis, G. E., & Laney, R. (2015). A subsumption
agent for collaborative free improvisation. Computer Music Journal , 39 (4),



20 Stefano Kalonaris

96–115. doi: 10.1162/COMJ a 00323

Manzolli, J., & Verschure, P. F. M. J. (2005). Roboser: A real-world com-
position system. Computer Music Journal , 29 (3), 55–74. doi: 10.1162/
0148926054798133

McCormack, J. (2003). The application of l-systems and developmental models
to computer art, animation and music synthesis (Unpublished doctoral
dissertation). Monash University.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., . . . Bengio, Y.
(2016). SampleRNN: An unconditional end-to-end neural audio generation
model. Computer Research Repository , abs/1612.07837 . Retrieved from
http://arxiv.org/abs/1612.07837

Minsky, M. (1986). The society of mind. New York, NY: Simon & Schuster, Inc.

Moorman, C., & Miner, A. S. (1988). Organizational improvisation and organi-
zational memory. The Academy of Management Review , 23 (4), 698–723.

Pachet, F. (2003). The Continuator: Musical interaction with style. Journal of
New Music Research, 32 (3), 333–341. doi: 10.1076/jnmr.32.3.333.16861

Pachet, F., Roy, P., Moreira, J., & d’Inverno, M. (2013). Reflexive loopers for
solo musical improvisation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 2205–2208). New York, NY:
ACM. doi: 10.1145/2470654.2481303

Peters, C., Castellano, G., & de Freitas, S. (2009). An exploration of user
engagement in HCI. In G. Castellano, M. J., J. Murray, K. Karpouzis, &
C. Peter (Eds.), Proceedings of the International Workshop on Affective-
Aware Virtual Agents and Social Robots (pp. 9:1–9:3). New York, NY:
ACM. doi: 10.1145/1655260.1655269

Quigley, M., Gerkey, B. P., Conley, K., Faust, J., Foote, T., Leibs, J., . . . Ng,
A. Y. (2009). ROS: An open-source robot operating system. In ICRA
Workshop on Open Source Software. Retrieved from http://www.robotics

.stanford.edu/~ang/papers/icraoss09-ROS.pdf

Rowe, R. (1992a). Interactive music systems: Machine listening and composing.
Cambridge, MA: MIT Press.

Rowe, R. (1992b). Machine listening and composing with Cypher. Computer
Music Journal , 16 (1), 43–63.

Simon, H. (1956). Rational choice and the structure of the environment. Psy-
chological Review , 63 (2), 129–138.

Simon, H. (1996). The sciences of the artificial. Cambridge, MA: MIT Press.

Slote, M. (2004). Two views of satisficing. In M. Byron (Ed.), Satisficing and
maximizing: Moral theorists on practical reason (pp. 14–29). Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511617058.002

Snyder, B. (2000). Music and memory: An introduction. Cambridge, MA: MIT
Press.

Solomon, L. (1986). Improvisation ii. Perspectives of New Music, 24 (2), 224–235.

Stark, A. M., Davies, M. E. P., & Plumbley, M. D. (2009). Real-time beat-
synchronous analysis of musical audio. In U. Zölzer (Ed.), Proceedings of
the 12th International Conference on Digital Audio Effects (pp. 299–304).



References 21

Como, Italy.
Stark, A. M., & Plumbley, M. D. (2009). Real-time chord recognition for

live performance. In Proceedings of the International Computer Music
Conference (pp. 85–88). Montreal, Canada.

Stowell, D., Robertson, A., Bryan-Kinns, N., & Plumbley, M. D. (2009). Evalua-
tion of live human-computer music-making: Quantitative and qualitative
approaches. International Journal of Human-Computer Studies, 67 (11),
960–975. doi: 10.1016/j.ijhcs.2009.05.007

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson
(Eds.), Organization of memory (pp. 381–402). New York, NY: Academic
Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind , 59 (236),
433–460. doi: 10.1093/mind/LIX.236.433

Wallace, R. (2010). Improvisation and the making of American literary modernism.
New York, NY: Continuum.

Wang, C., Hsu, J., & Dubnov, S. (2016). Machine improvisation with variable
Markov oracle: Toward guided and structured improvisation. Computers
in Entertainment , 14 (3), 4:1–4:18. doi: 10.1145/2905371

Weinberg, G., Godfrey, M., Rae, A., & Rhoads, J. (2008). A real-time genetic
algorithm in human-robot musical improvisation. In R. Kronland-Martinet,
S. Ystad, & K. Jensen (Eds.), Computer music modeling and retrieval.
Sense of sounds (pp. 351–359). Berlin, Heidelberg: Springer. doi: 10.1007/
978-3-540-85035-9 24

Young, M. (2008). NN music: Improvising with a ‘living’ computer. In
R. Kronland-Martinet, S. Ystad, & K. Jensen (Eds.), Computer music
modeling and retrieval. Sense of sounds (pp. 337–350). Berlin, Heidelberg:
Springer. doi: 10.1007/978-3-540-85035-9 23


