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Abstract We introduce a method for imposing higher-level structure
on generated, polyphonic music. A Convolutional Restricted Boltzmann
Machine (C-RBM) as a generative model is combined with gradient des-
cent constraint optimisation to provide further control over the genera-
tion process. Among other things, this allows for the use of a “template”
piece, from which some structural properties can be extracted, and trans-
ferred as constraints to the newly generated material. The sampling pro-
cess is guided with Simulated Annealing to avoid local optima, and to
find solutions that both satisfy the constraints, and are relatively stable
with respect to the C-RBM. Results show that with this approach it is
possible to control the higher-level self-similarity structure, the meter,
and the tonal properties of the resulting musical piece, while preserving
its local musical coherence.

Keywords: Constrained Sampling, Convolutional Restricted Boltzmann Ma-
chine, Music Generation, Optimisation

1 Introduction

For centuries, mathematical formalisms have been used to generate musical ma-
terial (Kirchmeyer, 1968). Since computers can automate such processes, auto-
matic music generation has become a small, but steadily emerging field in Arti-
ficial Intelligence and Machine Learning. Nevertheless, automatic music genera-
tion as a problem is far from solved: musical outputs created by artificial systems
are regarded as a curiosity by human listeners at best, but all too often they
are taken as a direct offence to our sense of musical aesthetics. This sensitivity
to violations of even the most subtle musical norms illustrates how complex the
problem of (especially polyphonic) music generation is. In addition, there are
only a few objective evaluation criteria to rigorously test and compare music
generation systems, all of which involve human judgement (Jordanous, 2012;
Pearce & Wiggins, 2001).

This is lamentable, not least since successful methods for automatic music
generation would be of considerable commercial interest to the music, gaming
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and film industries. Moreover, potential applications that have remained unex-
plored as of yet, including adaptive music in cars or in fitness applications, could
personalise music and thus provide a completely new listening experience.

In line with a global surge in deep learning and neural network modelling over
the past decade, several studies address the task of music modelling as a form
of sequence learning, in which musical pieces are formulated as a time series of
musical events, using state-of-the-art sequence models such as Recurrent Neural
Networks (RNN) and Long Short-Term Memory (LSTM). For restricted genres
or representations such as monophonic folk melodies (Sturm, Santos, Ben-Tal
& Korshunova, 2016), symbolic chord sequences, or drum tracks (Choi, Fazekas
& Sandler, 2016) and even in polyphonic music with clearly defined melodic
voices, such as Bach chorales (Boulanger-Lewandowski, Bengio & Vincent, 2012;
Hadjeres, Pachet & Nielsen, 2017; Liang, Gotham, Johnson & Shotton, 2017;
Huang, Cooijmans, Roberts, Courville & Eck, 2017), sequence modelling ap-
proaches yield impressive results that are sometimes hard to distinguish from
human-composed material.

However, in more complex musical material, such as piano music from the
classical (e.g. Mozart) or romantic period (e.g. Chopin, Liszt), not to mention
orchestral works, important musical characteristics may defy straight-forward
time series modelling approaches. Tonality for example, is the characteristic
that music is perceived to be in a particular (possibly time-variant) musical key,
implying that some pitches are regarded as more stable than others. Although
the perception of musical key is a complex topic in itself, there is evidence that
an important determining factor is the frequency of occurrence of pitches in the
piece (Smith & Schmuckler, 2004).

In addition to tonality, meter is an important aspect of music. Perception
of meter is the sensation that musical time can be divided into equal intervals
at different levels, and that positions that coincide with the start of higher-
level intervals have more importance than those coinciding with lower levels.
Analogous to the perception of musical key, the perception of meter is in part

related to the distribution of musical events over time (Palmer & Krumhansl,
1990).

Lastly, music often transmits a sense of coherence over the course of the
piece, in that it has a structural organisation in which motifs (small musical
patterns), but also larger units such as phrases, melodies or complete sections
of the music are repeated throughout the piece, either literally or in an altered
form. This characteristic is reflected in the self-similarity matriz of the music,
where entry (7, ) expresses the similarity between the music at positions ¢ and
j. This coherence by way of repeating and developing musical material over the
course of the piece is arguably one of the aspects of music that make listening
and re-listening a valuable experience to human listeners.

Important musical characteristics such as these are not straight-forward to
capture using a naive sequence modelling approach, unless the musical material
is restricted or simplified as mentioned above. For example, it is a challenge for
current models to generate music that is diverse and interesting, and at the same
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time induces a stable musical key over an expanded period of time. It is even
more challenging to generate music that exhibits the hierarchical organisational
structure common in human-composed music. For instance, the rather common
pattern of a melodic line from the opening of a piece being repeated as the
conclusion of that piece is very hard to capture, even if state-of-the-art sequence
models like LSTMs are capable of learning long-term dependencies in the data.
Models that fail to capture these higher-level musical characteristics may still
produce music that on a short time scale sounds very convincing, but on longer
stretches of time tends to sound like it wanders aimlessly, and misses a sense of
musical direction.

In this work, we do not address the problem of learning the discussed prop-
erties from musical data. Rather, our contribution is a method to enforce such
properties as constraints in a sampling process. We start from the observation
stated above, that neural network models in the various forms that have recently
been proposed are adequate for learning the local structure and coherence of the
musical surface, that is, the musical texture. The strategy we propose here uses
such a neural network (more specifically, a Convolutional Restricted Boltzmann
Machine, see Section 3.1) as one of several components that jointly drive an
iterative sampling process of music generation. This model is trained on musical
data, and is used to ensure that the musical texture is similar to that of the
training data.

The other components involved in the sampling process are cost functions
that express how well higher-level constraints like tonal, metrical and self-simi-
larity structure are satisfied in the musical material at each stage in the process.
By performing gradient descent on these cost functions the sampling process
is driven to produce musical material that better satisfies the constraints. The
desired shape of these higher-level structural constraints on the piece is not
hard-coded in the cost-functions, but is instantiated from an existing piece. As
such, the existing piece serves as a structure template. The generation process
then results in a re-instantiation of that template with novel material. Through
recombination of structural characteristics from a musical piece that is not part
of the neural network’s training data, the model is forced to produce novel solu-
tions.

We refer to the above process as constrained sampling. Informally, it can
be imagined as a musical drawing board that is initially filled with random
pitches at random times, and where the neural network model as well as each of
the constraints take turns to slightly tweak the current content of the drawing
board to their liking. This process continues until the musical content can no
longer be tweaked to better satisfy the model and constraints jointly.

We believe this approach provides a novel and useful contribution to the prob-
lem of polyphonic music generation. Firstly, it takes advantage of the strengths of
state-of-the-art deep learning methods for data modelling. The combination with
multi-objective constraint optimisation compensates for the weaknesses of these
methods for music generation, mentioned above. Moreover, it provides high-level
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user control(™) over the generation process, and allows for relating the generated
material to existing pieces, both of which are interesting from a musical point
of view.

In addition to the description of the constrained sampling approach to music
generation, the goal of the present paper is to validate the approach in several
ways. First we present a qualitative discussion of generated musical samples,
illustrating the effect of the constraints on the musical result. We show that al-
though the constraints and the neural network embody different objectives, the
evolving musical material produced by the constrained sampling process tends
to simultaneously approximate meeting these different objectives. Furthermore,
we adopt Information Rate as an independent measure of musical structure
(Wang & Dubnov, 2015), in order to assess the effect of the repetition structure
constraint, and compare our approach to two variants of the state-of-the-art
RNN-RBM model for polyphonic music generation (Boulanger-Lewandowski et
al., 2012). This comparison shows that the constrained sampling approach sub-
stantially increases the Information Rate of the produced musical material over
both unconstrained approaches (including the RNN-RBM variants), implying a
higher degree of structure.

The paper is structured as follows: Section 2 gives an overview of related
models and computational approaches to music generation. Section 3 describes
the components involved in the constrained sampling approach, which is sub-
sequently introduced in Section 4. Section 5 describes the experimental validation
of the constrained sampling approach in the context of Mozart piano sonatas.
We discuss the empirical findings in Section 6 and give conclusions and future
perspectives in Section 7.

2 Related work

Early attempts using neural networks for music generation were reported in
(Todd, 1989), where monophonic melodies were encoded in pitch and duration
and an RNN was trained to predict upcoming events. In (Mozer, 1994), an
RNN system called CONCERT was proposed, and first systematic tests on how
well local and global musical structure (e.g. AABA) of simple melodies could
be learned, were made. In addition, chords were used to test if this facilitates
the learning of higher-level structure, but the results were not convincing. This
was one of the first papers which showed the difficulties of learning structure in
music.

More recently, Eck and Schmidhuber (2002) trained a Long Short-Term
Memory (LSTM) network (a state-of-the-art RNN variant), jointly on a single
chord sequence along with several different melodies. This is an example of a
harmonic template which guides a melodic improvisation. Chords and melody
notes were separated in the input and output connections so that the model

(1) The user has control over the generation process by the choice of the template piece,
but also more directly by manipulation of the structure templates extracted from
the template piece. This aspect is beyond the scope of the current article.
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could not mix up harmony and melody notes. That way, the LSTM could overfit
on the single chord sequence and generalise on the monophonic melodies. In a
polyphonic setting, common RNNs are not suitable for generation in a random
walk fashion as the distribution at time ¢ is conditioned only on the past, but
it would be necessary to consider the full joint distribution also for all possible
settings in ¢.

This limitation was overcome by the RNN Restricted Boltzmann Machine
(RNN-RBM) model for polyphonic music generation introduced in (Boulanger-
Lewandowski et al., 2012), and the similar LSTM Recurrent Temporal RBM
(LSTM-RTRBM) model proposed in (Lyu, Wu, Zhu & Meng, 2015). In those ar-
chitectures, the recurrent components ensure temporal consistency, while the Re-
stricted Boltzmann Machine (RBM) component is used for sampling a plausible
configuration in t. Our contribution lies between the before-mentioned LSTM
approach where a higher-level structure is imposed by using a template, and the
RNN-RBM approach, where the ability of an RBM to model low-level struc-
ture is utilised. Further methods to constrain generated material by pre-defining
voices to guide the sampling process are introduced in (Hadjeres et al., 2017)
(based on LSTMs), and (Huang et al., 2017) (based on Convolutional Neural
Networks), both of which generate Bach chorales.

Another approach that uses a probabilistic model and constraints is called
“Markov constraints” (Pachet & Roy, 2011), which allows for sampling from a
Markov chain while satisfying pre-defined hard constraints. This is conceptually
similar to our method, but we use a different probabilistic model and soft con-
straints. Our method is more flexible in defining new constraints and it is of
linear runtime, while Markov constraints are more costly, but also more exact.
Herremans and Chew (2016) use a constrained variable neighbourhood search
to generate polyphonic music obeying a tension profile and the repetition struc-
ture from a template piece. Furthermore, Barbieri (2011) uses soft constraints to
incorporate a-priori-information in a Gibbs sampling process for a User Rating
Profile model.

Cope (1996) explicitly imposes higher-level structure in a generation pro-
cess. So-called SPEAC identifiers are used to generate music in a given tension-
relaxation scheme. Another example of generating structured material is that in
(Eigenfeldt & Pasquier, 2013), where Markov chains and evolutionary algorithms
are used to generate repetition structure for Electronic Dance Music. Collins,
Laney, Willis and Garthwaite (2016) use Markov chains together with structure
schemes and explicit methods for handling transitions between repeating seg-
ments in order to generate structured music. Similarly, Whorley and Conklin
(2016) use a transformational approach to generate Bach chorales, and Conklin
(2016) generates chords using Markov chains and pre-defined repetition struc-
tures. A Hierarchical Variational Autoencoder for music generation, able to learn
hierarchical tonal structure, is proposed in (Roberts, Engel & Eck, 2017).

A method similar to our approach is that of Gatys, Ecker and Bethge (2016)
for image style transfer. They also use gradient descent on the input for satisfying
multiple objectives (approximating a gram-matrix defining the style, as well as
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the initial picture defining the structure). In contrast to our method, there is
no probabilistic model involved. Different solutions for the same objectives are
merely due to the initialisation of the input with random noise. Application of
the method to music would, however, not allow for the control needed to comply
with some music-specific properties like self-similarity or the somewhat strict
rules of musical tonality.

Examples of connectionist generation approaches with constraints in other
domains are that in (Graves, 2013) where biasing and priming is used in LSTMs
to control the generation of sequences of handwritten text, and in (Taylor, Hinton
& Roweis, 2006) where a conditional RBM is used to generate different human
walking styles. In such problems, the number of variables is fixed and lower
than in music generation, and structural properties like repetition are either
not a property of the data (handwritten text) or periodic (walking), whereas
polyphonic music exhibits complex structure in multiple hierarchical levels.

3 Method

In this Section, we describe the methods used to create musical output. We
start by describing the Convolutional Restricted Boltzmann Machine used for
sampling new content (Section 3.1). The gradient descent (GD) method used
to impose constraints on the sampling process is introduced in Section 3.2. The
complete process, referred to as Constrained Sampling (CS) and depicted in
Fig. 1, is introduced in Section 4.

3.1 Convolutional Restricted Boltzmann Machine (C-RBM)

A Convolutional Restricted Boltzmann Machine (C-RBM) (Lee, Grosse, Ran-
ganath & Ng, 2009) is a two-layered stochastic version of a convolutional neural
network with binary units, as known from LeCun et al., (1989). In our setting,
the visible layer with units v € RT*F where 0 < v < 1, constitutes a piano
roll representation (see Section 5.2) with time 1 < ¢t < T and midi pitch num-
ber 1 < p < P. All units in the hidden layer belonging to the kth feature map
share their weights (i.e. their filter) W* € REXF and their bias by € R, where
R denotes the filter width (i.e. the temporal expansion of the receptive field),
and each filter covers the whole midi pitch range [1, P]. We convolve only in the
time dimension, which is padded with R/2 zeros on either side (the reason for
this design decision is given in the end of this section). We use a stride of d,
meaning the filters are shifted over the input with step size d. This results in a
hidden layer h € REX(T/d) wwhere 0 < hij <1land j €0...7T/d. See Fig. 2 for
an illustration of the C-RBM used in our experiments.

We train the C-RBM with Persistent Contrastive Divergence (Tieleman,
2008) aiming to minimise the free energy function

.F(V) = — Zavt _ Zlog <1 4 e(bk+(Wk*v)]-><d)) (1>
t k,j
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Figure 1: Constrained sampling using an existing piece x as a structure tem-
plate. A randomly initialised sample v is alternately updated with Gibbs
sampling (GS) and gradient descent (GD). In GD, the error ¢(x,y) between
structural features of x and v is lowered, in GS the training data distribution
is approximated. The Convolutional RBM consists of visible layer v and hidden
layer h. The filter W* is shared among all units in feature map h*. Depicted
equations are also given in Section 3.2.

for training instances v, where a € R and b € R¥ are bias vectors, and
* is the convolution operator. Note that in two-dimensional convolution, each
feature map usually has a scalar as bias (e.g. by), because all positions in a
feature map are assumed to be equivalent. However, since we convolve only in
the time dimension, and since there is a non-uniform distribution over the pitch
dimension, we define the bias for the input feature map v as a vector a of length
P.

The probability of a unit being active depends on the full configuration of
the opposing layer. When updating hidden units h and visible units v, each unit
is randomly chosen to be active (i.e. 1) or inactive (i.e. 0) with probabilities

R,P
Pl =1|v) =0 ((D_ Wk, x v gz ,) +bi) (2)
T‘,p
and
R/d,K .
Pl =11h) =0 (( > Wiap X b g) + ), 3)
rk

where W* denotes the horizontally flipped weight matrix. Note that it is also
valid to propagate such probability values through the network (i.e. calculate the
activation probabilities of one layer based on the probabilities of the opposing
layer).
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Figure 2: Illustration of a C-RBM with strided convolution (using stride d) in
the time dimension t of a music piece v € RT*” in two-dimensional piano roll
representation using K one-dimensional feature maps h* where all units in a
map share their weights W* € RF*F and their bias by, (bias not depicted in the
illustration).

A sample can be drawn from the model by randomly initialising v (following
the standard uniform distribution), and running block Gibbs sampling (GS) until
convergence. To this end, hidden units and visible units are alternately updated
given the other. In doing so, it is common to sample the states of the hidden
units for the top-down pass, but use the probabilities of the visible units for the
bottom-up pass. After an infinite number of such Gibbs sampling iterations, v
is an accurate sample under the model. In practice, convergence is reached when
F(v) stabilises.

The reason for convolving only in the time dimension is that there are correl-
ations between notes over the whole pitch range. In a one-layered setting with 2D
convolution, the filter height (i.e. the expansion of filters in the pitch dimension)
is typically limited, for example, to one octave. In that case, correlations would
only be learned between notes within one octave. Learning correlations over a
wider range would usually be the role of higher layers in a neural network stack.
However, in order to show the principle of constrained sampling it is sufficient to
use only one layer with 1D convolution, which is also advantageous for limiting
the overall complexity of the architecture.

3.2 Imposing constraints with gradient descent (GD)

When sampling from a C-RBM, the solution is randomly initialised and con-
verges to an accurate sample of the data distribution after many steps (see
Section 3.1). During this process, we repeatedly adjust the current solution v
towards satisfying a desired higher-level structure regarding some musical prop-
erties. To this end, we subject v (i.e. the input, not the model parameters) to a
GD optimisation process aiming to minimise a differentiable cost function ¢(-)
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using learning rate v as

99(x, v)
a2t (4)

v

where x € RT*F 0 < 24, < 1, is a template piece from which we want to transfer
some structural properties to our sample v. After every GD update, we set each
entry 9, = min(1, max(0,9;,)), to ensure v € [0, 1]7*". The cost function may
consist of several terms g4(x, v) (weighted with factors wg), each defining a soft
constraint which is to be imposed on the sample:

vV=v

d(x,v) = go(x,V)wo + -+ + gp_1(x, V)wp_1. (5)

Note that x and v, as representations of a musical score, could be assumed to
be binary, but we define them as continuous variables. This is because we want
to store continuous results of the GD optimisation in v, as well as intermediate
probabilities during Gibbs sampling. Defining x as a continuous variable is a
generalisation towards encoding note intensities or note probabilities, making it
possible to express relative importance between notes.

In the following, we will introduce three constraints we tested in our exper-
iments. Note that the method is not limited to those constraints, and can be
extended with additional terms which are differentiable with respect to v.

Self-similarity constraint The purpose of the self-similarity constraint is to
specify the repetition structure (e.g. AABA) in the generated music piece, using
a template self-similarity matriz as a target. Such a self-similarity representation
is particularly useful, because it also provides distances between any two parts
of a piece. Thus, the degree of similarity, including strong dissimilarity, may be
encoded, too. Such a representation abstracts from the actual musical texture
and is therefore to a large extent content-invariant. This allows for transferring
the similarity structure in different hierarchical levels between pieces of different
style, tonality, or rhythm.

A self-similarity matrix s(z) € R?*/ for an arbitrary music piece z € [0, 1]T*F
in piano roll representation is calculated by tiling z horizontally in tiles of width
A and by using them as 2-D filters for a convolution over the time dimension of
z (see Fig. 3). Therefore I =T and J = T/A, and we calculate a single entry at
position 7, j of the self-similarity matrix as

AP
5(2)ij = Y ZixAtapZiirp- (6)
Ap
To impose the self-similarity constraint, we minimise the mean squared error
(MSE) between a target self-similarity matrix of the squared template piece
s(x?) and the self-similarity matrix of the squared intermediate solution s(v?)
as

)sclf—sim _ Zf,’JJ (S(XQ)LJ - S(Vz)ivj)Z (7)
N IxJ '

g(x,v
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J=T/A

Figure 3: Depiction of calculating the self-similarity matrix s(z) € R’/ using
convolution. A music piece in piano roll representation z € [0,1]7*F is hori-
zontally tiled, and those tiles are used as filters for a convolution with z. The
response for a single filter constitutes a single line in the resulting self-similarity
matrix. Low to high response is depicted in a range from dark blue to light blue
to red.

The reason for squaring x and v is that it leads to a higher stability in the
optimisation, because it reduces low intensity noise and it adds contrast to the
resulting self-similarity matrix. We also tried to represent transposed repetition
as a constraint using two-dimensional convolution. However, we found that this
leads to a perfect reconstruction of the template piece, as such a self-similarity
representation fully specifies the musical texture.

Tonality constraint Tonality is another very important higher order property
in music. It describes perceived tonal relations between notes and chords. This
information can be used to, for example, determine the key of a piece or a musical
section. A key is characterised by a tonal centre (the pitch class that is considered
to be central, e.g. C, or Af}), and a mode (the subset of pitch classes that form
part of the key, e.g. major or minor). The distribution of pitch classes in the
musical texture within a (temporal) window of interest is an important factor
in the perceived key of that window. Different window lengths M may lead to
different key estimates, constituting a hierarchical tonal structure. A common
method to estimate the key in a given window is to compare the distribution of
pitch classes in the window with so-called key profiles u™°4¢ (i.e. paradigmatic
relative pitch-class strengths for specific modes; the profiles are invariant to
changes of tonal centre). In (Temperley, 2001), key profiles for major mode u™
and minor mode u™™" are defined as

u™™ = (5,2, 3.5, 2, 4.5, 4, 2, 4.5, 2, 3.5, 1.5, 4)T,



Imposing Structure in Music Generation 11

u™t = (5, 2, 3.5, 4.5, 2, 4, 2, 4.5, 3.5, 2, 1.5, 4)7,

where the numerical values express the strengths of the different pitch classes
that make up the key. We use these two key profiles as filters for a music piece
z € [0,1)7*P. By repeating them M times in the time dimension, we obtain a
filter for a window of size M. By repeating them O = P/12 times in the pitch
dimension, we extend the filters over all octaves represented in z. When shifted
in the pitch dimension with shifts x € 0.../C — 1 we obtain a filter for each of
the IC = 12 possible keys. If we choose the profile for a specific mode u™°%°, an
estimation window size M, and the number of octaves O represented by z, we
obtain a key estimation vector k(z)1°d® € R* at time ¢ for all shifts & as

M,O,I
k(z)od = Z u (i + &) mod I) - Zepm,itort2, (8)
m,o,i
for I = 12 entries in key profile u", where - denotes the common multiplication of
scalars. Subsequently, we concatenate the key estimation vectors of both modes,
k(z)i*™ and k(z)™®, to obtain a combined estimation vector k(z); € R?! in ¢,
which is finally normalised as

k(z); — min(k(z))I

K(2)r = max(k(z);) — min(k(z)¢)’

(9)

where I is a vector of ones of length 2K.(2) Fig. 4 depicts the resulting concaten-
ated key estimation vectors. Using these vectors, we may impose a specific tonal
progression on our solution by minimising the MSE between the target estimate
k'(x); and the estimate of our current solution k’(v); such that:

g(X, V)tonal — Zt ||k/(X2)’tC; k/(v)tH ) (10)

Meter constraint The meter (e.g. 3/4, 4/4, 7/8) defines the duration and
the perceived accent patterns in regularly occurring bars of a music piece. For
example, in a 4/4 meter, relatively strong accents on the first and the third beat
of a bar are common. We impose a common meter extracted from a template
piece on our sample, to obtain a degree of global rhythmic coherence.
Perceived accent patterns depend on the relative occurrence of note onsets in
a bar, on the intensity of played notes, or on the length of notes starting at the
respective positions of a bar. However, note intensities are not encoded in our
data, and it is not obvious how to incorporate note durations in our differentiable
cost function. Therefore, we use note onsets only. To this end, we constrain the
relative occurrence of note onsets within a bar to follow that of a template piece.

() Even though the derivatives of min(-) and max(-) are not guaranteed to be always
defined, in practice these cases are hardly ever a problem in gradient descent, and
are typically dealt with in software frameworks for symbolic differentiation such as
Theano (Theano Development Team, 2016).
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Figure 4: Example of key estimation vectors over time. k(z)™* represent es-
timations for 12 possible major keys and k(z)™® represent estimations for 12
possible minor keys, where the pitch classes constituting the tonic are ordered
from the top to the bottom. Bright pixels represent high strength and dark pixels
represent low strength of the respective key. For example, the upper most line
in k(z)™ represents the estimation strength of the C major key over time, the
third line represents the strength of the D major key, etc.

Abiding by such a distribution helps the generated material to keep implying a
regular meter.

The onset function w(-) results from a discrete differentiation over the time
dimension of an arbitrary music piece in piano roll representation z € [0, 1]7*F.
We rectify that result (as we are not interested in note offsets), and sum over
the pitch dimension:

P

w(z,t) = Zmax(o7 Zip — Zt—1p)- (11)

P

In order to calculate the relative occurrences of onsets within a bar, the length
T of a bar has to be pre-defined. We count the number of onsets occurring on
the respective positions of all bars in the music piece. That is, we sum up all
values of distance 7 in the onset function w(-) as

T/T
pla)r = 3wl px T), (12)

w

where 7 € 0...7 — 1 is the position in a bar. In our experiments, we use a
resolution of 16th notes in the representation and the template is in 4/4 meter,
therefore 7 = 16.

To keep the function independent of the absolute number of onsets involved,
p(z) is standardised by subtracting its mean p(z) and dividing through its stand-
ard deviation o(p(z)), resulting in zero mean and unit variance:

vy p(z) — p(z)
=@y 13)
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Relative onset frequencies on bar positions
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Figure 5: Relative (standardised) onset frequencies p’(z) on bar positions of a
music piece as obtained from Equation 13.

A standardised onset distribution is plotted in Fig. 5. Finally, we minim-
ise the MSE between a standardised onset distribution p’(x) and that of our
intermediate solution p’(v) as

g(x, V)meter _ le(x) ;pl<v)|| ) (14)

4 Constrained Sampling

In this Section, we describe how the C-RBM is used as a generative model to
produce musical textures that resemble those of human-composed music, and
combined with the soft constraints described above, to enforce additional tonal,
meter and self-similarity structure on these textures.

The method proposed here has several practical merits. First, a C-RBM can
take any input as a starting point for (further) sampling. This allows for local
“mutations” of intermediate solution candidates in a heuristic process like Simu-
lated Annealing (see Section 4.2) and facilitates the controlled exploration of the
search space. Second, in a C-RBM continuous values in the input are interpreted
as probabilities. This facilitates external guidance through gradual adaptation
of note probabilities in a directed gradient descent (GD) optimisation process.
For illustration, Fig. 6[2a] shows an example of a piano roll after a GD phase.
The grey tones (non-zero probabilities) in the background of the piano roll will
influence the subsequent sampling step from the C-RBM. Third, the solution is
sampled as a single instance (i.e. all notes in a music piece are updated simul-
taneously) and temporal dependencies are modelled in a bi-directional manner.
That way, global constraints can be imposed by iterative adaptation of local
structures.
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Figure 6: Illustration of constrained sampling. (1) Template piece, (2) Intermediate sample after the GD phase, (3) Sample
after the GS phase. Fig.s in each group: (a) Piano roll representation, (b) Self-similarity matrix, (¢) Onset distribution in 4/4
meter, (d) Keyscape (cf. Section 5.5 for an explanation). After the GD phase (2), the target higher-level properties imposed as
constraints are relatively well approximated. Due to limited training data and the stochastic nature of Gibbs sampling, after
the GS phase the higher-level properties are more dissimilar again.
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ALGORITHM 1: Constrained Sampling. Number of iterations represent an example
scheme, as used in the experiments.

Data:
x € [0,1]7*F — Template Piece
v € [0,1)7*F — Random (standard uniform dist.) ¥ = v, N = 250, M = 15
foriel...N do
v v
v < 20 GD steps using Eq. 4 with v =10
forjel...M do
v < 100 GS steps using v
‘ v <~ 1 GD step using Eq. 4 with v =5

end
/* Simulated Annealing */
T;=1—1i/N

Te,Te < random values € [0, 1]
if re < exp (,M) or r. < exp (*M) then

T,
| v« v
end
/* Store best solution so far */
if f’(V)+2¢/(va) < ]:/(‘7)+2¢'<X7‘7) then
| Vv
end
end
return v

4.1 Example scheme and details

In Fig. 1, an overview of Constrained Sampling (CS) is shown. During the con-
strained sampling process we alternate between a GS phase with the one-layered
C-RBM (Section 3.1), and a GD optimisation phase on the cost functions (Sec-
tion 3.2). In each phase, typically multiple iterative updates take place, and the
sampling results are sensitive to the balance struck between the GS and GD
phases, in terms of the number of updates performed in each phase.

The numbers proposed in the following CS sampling scheme have been found
to work well in our experiments. The scheme may have to be adapted to work
well with other training settings (e.g. different C-RBM architectures, or different
constraints), and is mainly for illustrative purposes. In Algorithm 1, the whole
process including Simulated Annealing (see Section 4.2) is shown.

Starting from a random uniform noise in v, we alternate 20 GD steps using
learning rate v = 10 (i.e. GD phase, see Fig. 6[2a] for a result of this phase),
and 1500 GS steps (i.e. GS phase, see Fig. 6[3a] for a result of this phase). We
consider this one constrained sampling iteration. We found that results improve
when, during the GS phase, after every 100 GS steps we execute 1 GD step
with learning rate v = 5. After 250 CS iterations, the sample with the minimal
average value of the standardised GD cost and the standardised free energy over
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Figure 7: Standardised cost, free energy and their mean in a constrained
sampling process over 250 iterations. Periods of constant cost (horizontal line
segments) in later iterations are a result of Simulated Annealing, where some
unfavourable solution candidates are rejected.

the whole CS process is chosen (see Section 4.2 on standardising the cost and
free energy functions).

During CS, in the C-RBM the free energy is to be reduced (i.e. a high prob-
ability solution is to be found), while in GD optimisation the objective function
is to be minimised (see Fig. 7 for a plot of the curves). As the two models used
compete in approximating their objectives (see Fig. 8), their mutual influence
has to be balanced. In addition to using Simulated Annealing to prevent strong
deteriorations of the solution with respect to the objectives (see Section 4.2),
some parameters need to be carefully adjusted.

The main parameters for balancing the models are the number of GD and GS
steps used in a CS iteration, as well as the learning rate and the relative weighting
of the cost terms in the GD optimisation (see Tab. 1 for weightings used in our
experiments). In general, the optimal number of steps in each model is inversely
proportional to the size of the training corpus. The more training data, the more
possible solutions can be sampled by the probabilistic model making it easier to
satisfy constraints imposed by the GD optimisation. Conversely, with a model
trained on little data, more GS steps are necessary in order to find another low
free energy solution after being distracted by the GD phase.

Although we do not provide a formal convergence proof, all experiments
show a joint decrease of the various quantities to be minimised (the C-RBM
free energy, and the cost-functions of each of the constraints). Convergence is
reached when both the gradient descent cost and the free energy of the C-
RBM reach a minimum. When reaching equilibrium in an RBM, the visible unit
configuration (the sample) keeps changing during further sampling while the
free energy remains at the minimum. Therefore, with our method convergence
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Figure 8: Influence of Gibbs sampling (GS) and gradient descent (GD) on free
energy F(v) (see Equation 1) and cost ¢(x,Vv) (see Equation 5). Using only GS
results in low free energy but relatively high cost. Using only GD, the cost is very
low but the free energy is high. When using GS and GD, both methods compete,
resulting in a trade-off between low cost and low free energy although we choose
enough GS steps in the GS phase to always return to a “meaningful”, low free
energy state. For reference we test against random uniform noise, resulting in
very high free energy and cost. For each cluster, 50 data points were generated
with the trained C-RBM model (for GS) and the cost function (for GD) used in
our experiment (see Section 5)

is reached with respect to the overall (average) cost, but not with respect to a
final solution in v.

4.2 Simulated Annealing (SA)

Due to the interdependency between the sampling process of the probabilistic
model and the GD optimiser, it can easily happen that good intermediate solu-
tions deteriorate again by further sampling. Simulated Annealing (SA) helps to
find good minima by preventing sampling steps which would lower the solution
quality too much (see Algorithm 1 for the integration of SA in CS). After each
constrained sampling (CS) iteration, we evaluate the SA equation to obtain the

probability
fv) - f(v)
T;

of keeping solution candidate v, where v’ is the previous solution. We evaluate
this equation twice after each CS iteration. The first time, f(-) is the standardised
RBM free energy function F'(-) (see Equation 1) and the second time, f(+)
is the standardised GD cost function ¢'(+) (see Equation 5). For each of the
two resulting probabilities we generate a random number between 0 and 1, and
evaluate if it is smaller than the respective probability. If this is the case for

pr(v, V', i) = exp ( (15)
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both random numbers, we go on with solution candidate v, otherwise we return
to the former solution v’. The most important factor for the sensitivity of SA is
the variance of f(+) over all solutions, where a higher variance leads to smaller
probabilities for acceptance of a solution. Therefore, we standardise F(+) and
&(-), resulting in F'(-) and ¢'(-), to obtain comparable probabilities in SA. This
is done by scaling both functions to approximately zero mean and unit variance,
based on the observed values during the experiments. As the annealing scheme
we use T; = 1 —i/N. In Fig. 7 the standardised curves over a CS process are
depicted. In later iterations, Simulated Annealing causes periods of constant
cost, as some solution candidates are rejected.

Constraint wWq

Self-similarity 1.5
Tonality 5.0
Meter 0.5

Table 1: Relative weightings wgy of the terms used in the GD objective function
#(x,Vv) (see Section 3.2).

5 Experiment

This section describes an experimental validation of the method described in
Sections 3 and 4. In Section 5.1 and Section 5.2, we introduce the training
data and the data representation scheme, respectively. Section 5.3 describes the
training of the C-RBM. Section 5.4 introduces a quantitative measure for the
structural organisation of music, adopted from (Wang & Dubnov, 2015). We use
this measure to evaluate the success of the constrained sampling approach, both
with respect to original musical data, and with respect to other state-of-the-art
polyphonic music generation models. Lastly, Section 5.5 briefly describes the
procedure followed to produce musical material for qualitative evaluation.

5.1 Training Data

We use MIDI files encoding the scores of the second movement of three Mozart
piano sonatas, as encoded in the Mozart/Batik data set (Widmer, 2003): Sonata
No. 1 in C major, Sonata No. 2 in F major and Sonata No. 3 in B flat major.
When applying a (major) tonality constraint, we want to make sure that there
is enough training data for the probabilistic model in any possible (major) key.
Otherwise, in the GS phase, an intermediate solution might be always changed
back from a key imposed by the GD optimisation to the closest key available
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in the training data. Therefore, we transpose each piece into all possible keys,
which also helps to reduce sparsity in the training data. This results in a training
corpus size of 15144 time steps (of sixteenth note resolution).

A note on training data set size A widely shared insight in machine learning
is that to train neural network models effectively, more data is better. In general,
it is easy to see why this is the case, since larger amounts of data provide a richer
coverage of the relations to be learned in the data. However, depending on the
intended purpose of the model, there may be exceptions to this rule. In the
present study, where the main purpose of the model is to generate plausible
musical textures in the style of Mozart piano sonatas, we have found that the
set of all available training data (34 pieces) is likely too small for the C-RBM
model to approximate the data distribution well enough to produce samples of
high musical quality. A pragmatic trade-off we have chosen in this case is to
reduce the size of the training data to a few pieces, and let the model slightly
overfit those pieces. This will improve the musical quality of the samples, at the
cost of increased local resemblances of generated samples to fragments of the
training data.

5.2 Data Representation

We transform MIDI data in a binary piano roll representation of 7' = 512 time
steps over a range of P = 64 pitches (MIDI pitch number 28-92), using a tem-
poral resolution of sixteenth notes (see Fig. 6[1la]). Notes are represented by
active units (black pixels), and note durations are encoded by activating units
up to the note offset. If two notes directly follow each other at the same pitch,
they cannot be distinguished any more. Thus, the first note is shortened by a
sixteenth note if possible (i.e. if it is longer than a sixteenth note), otherwise the
merger has to be accepted. Note that a temporal subdivision of sixteenth notes
cannot represent all rhythmic patterns in the data without distortion. For ex-
ample, the durations {1/12, 1/12, 1/12} of 1/8 note triplets (as contained in the
Sonata No. 1) change to {1/16, 1/8, 1/16} using this representation. We accept
this bias, as it does not hinder our efforts to test the influence of constraints on
a generated texture.

5.3 Training

We train a single C-RBM using Persistent Contrastive Divergence (PCD) (Tiele-
man, 2008) with 10 fantasy particles, using learning rate 15 x 10~%. Compared
to standard Contrastive Divergence (Hinton, Osindero & Teh, 2006), the PCD
variant is known to draw better samples. One training instance has a length
T = 512, and we use a batch size of 1. The filter width R (see Section 3.1) is
set to 17, and we convolve only in the time dimension with stride 4, using 2048
hidden units.
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We apply the well-known L1 and L2 weight regularisation with strengths
8x107%* and 1 x 10~2, respectively, to prevent overfitting and exploding weights.
In addition, we use the max-norm regularization (Srebro & Shraibman, 2005),
which is an additional protection against exploding weights when using high
learning rates. We use sparsity regularization as introduced in (Lee, Ekanadham
& Ng, 2007), to increase sparsity and selectivity in the hidden unit activations,
leading to a better generalization of the data. When training with PCD, it can
happen that single neurons are always active, independent of the presented input.
Therefore we reset (i.e. randomize) the weights of any neuron which exceeds the
threshold of 0.85 average activation over the data.

5.4 Quantitative Evaluation

Based on the observation that probabilistic models can generate meaningful low-
level structure but struggle in obeying some higher-level structure, the focus of
this study is to increase the structural organization of the generated material. In
the important case of self-similarity structure, a critical property in music is the
balance of repetition and variation. This ratio is expressed by an information
theoretic measure called Information Rate (IR). It is the mutual information
between the present and the past observations and is maximal when repetition
and variation is in balance. Thus, the IR is minimal for random sequences, as well
as for very repetitive sequences. It has been shown that it provides a meaningful
estimator on musical structure, for instance in parameter selection for musical
pattern discovery (Wang & Dubnov, 2015).

For a given sequence v{¥ = {vg,v1,v2,...,vN}, the average IR is defined by
| X
R = 37 3 Hen) = Hen | 57 (16)

where H(v) is the entropy of v, which is estimated based on the statistics of
the sequence up to event v,. We approximate H (v, | vy~') using a first-order
Markov Chain, and H (v, ) by counting identical time slices. It may seem counter-
intuitive at first sight to utilise a first-order model for measuring the higher-level
structure of a piece. Arguably, a low-order estimation yields too optimistic IR
values, as the conditional entropy tends to be underestimated. However, the ini-
tial idea of contrasting the prior entropy of events with their conditional entropy
is still applicable using a first-order entropy estimation. That is, a high IR is
achieved when specific events occur rarely, but are very likely given their direct
predecessors — a situation which occurs particularly in sequences with higher-
level repetition structure. Note that the IR does not provide a measure for the
overall musical quality of the evaluated sequences, but only for the aspect of
self-similarity structure from an information theoretic point of view.

Model comparison In addition to using the C-RBM without constraints, we
use the RNN-RBM (Boulanger-Lewandowski et al., 2012), a state-of-the-art
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Figure 9: Box plot showing Average Information Rates for 34 original Moz-
art piano sonatas, 102 C-RBM samples with structure constraints, 102 C-RBM
samples without constraints, 102 samples from an RNN-RBM and 102 samples
from a GRU-RBM. Whiskers show standard deviations.

polyphonic music generation model, as a baseline for the quantitative evalu-
ation. Furthermore, we replace the RNN portion of the RNN-RBM with Gated
Recurrent Units (GRUs, Cho et al., 2014) resulting in a GRU-RBM. Both recur-
rent models are trained on the same data as the C-RBM, as described in Section
5.10),

We compare the average Information Rates between original Mozart piano
sonatas (all 34 pieces of the Mozart/Batik data set, Widmer, 2003), C-RBM
constrained samples using the original pieces as structure templates (3 samples
per original piece resulting in 102 samples with different lengths), 102 C-RBM
unconstrained samples, 102 RNN-RBM unconstrained samples and 102 GRU-
RBM unconstrained samples. The 102 unconstrained samples per model are
created by generating three samples for each original piece of the length of the
original piece. For the results of this comparison see Fig. 9, for a discussion see
Section 6.

Further measures for evaluating musical structure Information theory
could provide additional quantitative measures for the evaluation of structure in
music. An important basis for that is Information Content (IC), a measure of
the predictability of an event in a specific context. Prior research has shown that
IC can act as a kernel for determining segment boundaries (Pearce, Miillensiefen
& Wiggins, 2010; Lattner, Grachten, Agres & Chacén, 2015). Evaluating the
plausibility of IC over time in generated sequences could therefore constitute an
adequate measure for the evaluation of musical structure.

) Samples from the RNN-RBM and the GRU-RBM can be listened to on Soundcloud
under http://www.soundcloud.com/pmgrbm
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Another useful theory, the principle of uniform information density (UID),
originates in linguistics. It is based on the proposal of Shannon (1948) that for
optimal data flow through a noisy channel, the transferred information density
(i.e. the IC per time step) should be as uniform as possible. It was shown that
speakers intuitively follow these rules to keep the processing effort of the receiver
at a moderate level (Levy & Jaeger, 2006; Aylett & Turk, 2006).

Recent research provides evidence that UID could also account for structural
decisions in music composition, where it implies that the average IC in any
window of fixed duration over a musical piece should be constant. For example,
Temperley (2014) states “There is a tendency that when an intervallic pattern
is repeated with alterations, the alterations tend to lower the probability of
the pattern rather than raising it”. When a musical passage is repeated, its
Information Content (i.e. the listeners surprise) declines. The finding mentioned
above provides some evidence that in such cases, surprising alterations should
be inserted to keep the UID constant.

Since the IR is sufficient for evaluating our results, we do not use IC and UID.
Nevertheless, they seem promising as further evaluation measures to quantify
structure in generated music.

5.5 Qualitative Evaluation

The C-RBM is trained as described in Section 5.3 on the Mozart Sonatas (see
Section 5.1). After that, we pick a template piece (the first movement of the
piano sonata No. 6 in D major) and generate constrained samples, as introduced
in Section 4. For the weights used to balance the different terms in the GD cost
function, see Tab. 1. In the self-similarity constraint (see Section 3.2), we use a
window size A of 8 (i.e. half a bar), and for the tonality constraint we use an
estimation window width M of 4 (see Section 3.2). Fig. 10 shows some resulting
samples, which are discussed in detail in Section 6.

Keyscape We use keyscapes to illustrate the tonality of the pieces in Fig. 6
and Fig. 10. A keyscape illustrates the tonal context over a musical piece, where
each key receives a distinct colour. We use the humdrum mkeyscape tool by
David Huron, which analyses the musical piece with the Krumhansl-Schmuckler
key-finding algorithm (Krumhansl, 1990) in different levels of detail. The top
of the pyramid depicts the key estimation for the entire piece, while towards
the base the analysis is based on ever smaller window sizes. Each scale has a
distinct colour assigned to it and the keyscape is coloured according to the most
predominant scale estimation.

6 Results and discussion

6.1 Quantitative Evaluation

Fig. 9 shows average Information Rates (IRs) for original Mozart piano sonatas
and for samples from different models (cf. Section 5.4), where higher IRs indic-
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Figure 10: Template piece (1), Constrained samples (2 to 5) and an uncon-
strained sample as baseline (6). Fig.s in each group: (a) Piano roll representation,
(b) Self-similarity matrix, (c¢) Onset distribution in 4/4 meter, (d) Keyscape. By
constrained sampling, the template piece’s self-similarity and tonal structure, as
well as the onset distributions, are transferred to the generated solutions 2 to 5.
The unconstrained sample (6) at the bottom was sampled without constraints,
and thus does not reflect the structure of the template piece.
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ate more distinct self-similarity structures. It should be pointed out in advance
that sampling from a probabilistic model introduces some sampling noise which
increases the predictive entropy and therefore lowers the IR. It is difficult to
judge to what extent sampling noise on the one hand, and difficulties of the
model to adapt to given constraints on the other hand, lead to the significantly
lower IR of the constrained samples compared to the IR of the original Mozart
transcriptions. Nevertheless, it is clear from the results firstly that the IR of the
original music is higher than that of the generated music, and secondly that the
models without constraints produce music with lower IR than the constrained
C-RBM does. Note that the latter point is a non-trivial result, since the self-
similarity constraint does not explicitly optimise the Information Rate (neither
do the tonal or meter constraints, obviously), but just encourages similarity or
dissimilarity between the music at specific positions. This result is in accordance
with the initial observation that those models fail to generate higher-level self-
similarity structure. Due to their gating mechanism, GRUs are usually better at
learning long-term dependencies than regular recurrent units. The fact that the
GRU-RBM does not perform better than the RNN-RBM shows that GRUs also
have problems in modelling the content-invariant self-similarity property.

6.2 Qualitative Evaluation

Fig. 10 shows piano roll representations for the template piece (Fig. 10[1al), four
generated samples that were constrained with properties from the template piece
(Fig. 10[2a] to Fig. 10[5a]) and a baseline sample generated without constraints
from the template piece (Fig. 10[6a]). The corresponding constraints for each
musical piece are depicted in the respective figures b-d. The repetition structure
is marked on top of the template piece and over all other pieces and self-similarity
matrices with vertical, green lines.(*)

We chose the constrained samples by creating 20 solutions and picking the
best four with respect to the minimal average value of the standardised GD
cost and the standardised free energy over a constrained sampling process (see
Section 4.2 on standardising the cost and free energy functions). Thus, results
are selected to closely satisfy the given constraints rather than according to
their musical quality. Empirically we found that the musical quality in our set-
ting increases when loosening the influence of the constraints, as this allows
the probabilistic model to create more plausible samples (e.g. the examples in
Fig. 10 sometimes lack appropriate transitions between different sections which
is an effect of both constraint satisfaction and limited training data).

By approximating the self-similarity matrix of the template piece, some as-
pects of the repetition structure were convincingly transferred to the constrained
samples (see Fig. 10[1b] to Fig. 10[5b]). For example, the exact repetitions C /
C’ and H / H’ occur in every sample. It is interesting to see how the extension of
B to B’ is solved. Especially in the samples depicted in Fig. 10[2] and Fig. 10[3],

@ Al samples illustrated in Fig. 10 can be listened to on Soundcloud under http:
//www.soundcloud.com/pmgrbm
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the extension of B is realised by musical textures consistent with the immediate
past. In the sample in Fig. 10[5], the model did not produce satisfactory res-
ults for phrase B and B’ in a musical sense, although it found a solution which
is self-similar over that time period and therefore satisfies that self-similarity
constraint to a certain degree.

Parts E / E’ / E” are special cases, because even though they are very similar
at first sight, they are transposed repetitions which cannot be captured by the
self-similarity matrix as it is currently defined. In the self-similarity matrix of
the template, we see that each of those “E” sections is more or less similar or dis-
similar to different regions in the piece. In addition, we note that each repetition
has the length of one bar. When comparing these “E” sections with those in the
samples, we recognise the limits of the method concerning temporal resolution.
The C-RBM has a filter length of one bar, which is too wide for sampling three
bars with different requirements concerning similarity, while keeping a plausible
low-level structure. Therefore, in some samples the generated patterns span the
whole, or at least two of the “E” sections.

Part G in the repetition structure is similar to most parts of the piece, as can
be seen from the bright areas over the full height of the respective self-similarity
matrices. In the samples this is realised by choosing textures which are also
similar to most parts. Part J, in contrast, is very dissimilar to most areas of the
template piece. Probably due to limited training data, this sometimes results
in empty areas in the samples. Except for an apparent similarity in B and B’,
which is not reflected in the self-similarity matrix, the unconstrained baseline
sample does not follow the repetition structure of the template piece.

The onset distributions (see Subplots ¢ in Fig. 10), which are plots resulting
from Equation 13, are sometimes rather dissimilar to the onset distribution of
the template. This shows that it is not easy to approximate this global property.
One reason for this may be that it is a property which summarises the complete
music piece in only a few values, which makes it easy in the GD optimisation
to approximate by distributing small changes over the whole sample. Those are,
however, locally not strong enough to be kept during GS. Incorporating note
durations for emphasizing onsets of longer notes would lead to more character-
istic onset distributions, which could further lead to bigger local changes in the
probability of notes in the piano roll. However, in the onset distributions there is
a tendency of the peaks at position 0 and 8 to be higher than the others, which
corresponds to the tendency in the onset distribution of the template piece. Note
that the reason for every second value in the distributions being low is not the
meter constraint but the stride of one beat in the convolution. This provides the
model with a regular grid allowing it to learn that the probability of an onset
is lower at every second time step. Therefore, those values are also low for the
unconstrained baseline piece.

The keyscape (cf. Section 5.5) for each sample is depicted in the respective
subplots d. We can see that the main key (i.e. A major) of the template piece got
transferred well to the constrained samples, as the colors of the upper areas of
the keyscapes (purple) match exactly. Towards the lower areas of the keyscapes,
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the colors of some samples do not correlate with those of the template piece’s
keyscape. However, especially the modality to E major in the second quarter
of the piece, depicted in red, and the blue area in the beginning of the piece
(D major) are to some degree approximated in Fig. 10[2d] and Fig. 10[4d]. In
sample Fig. 10[3], the green area indicates a F minor scale, which is similar to
the E major scale (red) of the template piece (i.e. there is a difference in one
note, namely D/Df). In general, the tonal structure of constrained samples is
more stable than that of the unconstrained baseline sample, where the keyscape
indicates tonal incoherence.

As mentioned above, the illustrated samples are the best four of 20 with
respect to the overall cost. The most obvious shortcoming of samples not selected
because of higher cost is that they do not satisfy some of the given structural
constraints on a local level. This includes the failure to reproduce a repetition
at specific positions, or erroneously modulating into a key which does not occur
in the template piece. However, a closer inspection of such cases shows that
incorrect keys are often closely related to the desired keys, for instance the
parallel minor/major key. Parallel minor/major keys have most of their pitches
in common, but they are expected to follow a different distribution. Another
common problem in the non-optimal samples is that they show areas without
any notes, which is probably a symptom of the contrasting objectives of GD and
GS. We found that the C-RBM is very sensitive to changes in the parameters of
the whole system. Other models able to perform GS could lead to a more stable
functioning, like LSTMs used for GS in (Hadjeres et al., 2017).

7 Conclusion and future work

Music is typically highly structured at both lower and higher levels. State-of-
the-art sequence models such as RNNs and LSTMs have been successfully used
to generate music in restricted settings, but in more complex musical mater-
ial, such as piano music from the classical or romantic period, not to mention
orchestral works, important musical characteristics such as tonal, metrical and
self-similarity structure tend to defy straight-forward time series modelling ap-
proaches.

The constrained sampling method for music generation presented here ad-
dresses this problem by combining a stochastic neural network for sampling
plausible musical textures at a local level with soft constraints that impose
higher-level structure regarding meter, tonality and self-similarity structure, ob-
tained from a template piece.

The experimental validation of the proposed method reveals that the gener-
ated music possesses a stronger degree of structural organisation (as measured
by Information Rate (IR)) than unconstrained models, including a state-of-the-
art RNN-RBM model for polyphonic music generation. A qualitative analysis of
some generated music supports this finding, and clearly reveals repeated (but
not identical) musical patterns, as well as global similarities in tonal structure
to the template piece.
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The empirical results also reveal some shortcomings. Firstly, while imposing
constraints with the proposed method helps to generate high-level structure,
meaningful low-level structure can currently only be generated when the model
is trained on relatively small amounts of data. Overcoming this drawback may
require more powerful generative models — amenable to some form of Gibbs
sampling — as an alternative to the C-RBM. Our hypothesis is that generative
models can only generalise well on low-level structure if they are able to explicitly
represent (transposed) repetition. A promising approach to this is proposed by
Lattner and Grachten (2017), who show that relations between musical sections
can be learned and represented as so-called “mapping codes”.

Secondly, when listening to the generated musical samples it is clear that
the tonal, meter and self-similarity constraints presented here are by no means
fully elaborated nor exhaustive. For example, more specialised constraints — like
a differentiable formalisation of the IR measure — could optimise sequences to
directly obey desired structural properties. Perhaps most importantly, what is
currently missing is a constraint that enforces musical closure at boundaries of
structural units. Without such a constraint, the music contains repeated musical
structures, but these structures are hard to identify perceptually because their
boundaries are not marked by salient musical cues (such as harmonic resolution).
That said, the proposed constrained sampling approach is general enough to
accommodate this and possibly other constraints.
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