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Abstract 

Fuzzy relational music perception concerns the representation of congruent 
connections between musical features as fuzzy relations used to individuate 
and assemble concepts and conceptual hierarchies. This article presents two 
universal fuzzy domains of discourse, harmony H and grouping G, which 
partition sets using triangular norms (t-norms) based on generalised har-
monic root support and generalised time regularity, respectively. Fuzzy re-
lations between the sets of the domains are formed in the innate fuzzy neural 
architecture of a dedicated music faculty. Fuzzy relations are shown to be 
necessary representations for interconnection between the domains to indi-
viduate and assemble concepts. Concepts are individuated and assembled by 
virtue of fuzzy set resemblance relations between domains, or fuzzy logical 
implication relations in one or both domains through time. Fuzzy resem-
blance relations comprise the properties of weak reflexivity, weak symmetry 
and antitransitivity in a H ⨉ G Cartesian product space. Fuzzy implication 
relations involve fuzzy overlap (or continuation) of elements, calculated us-
ing a t-norm operator (min operator), in one or both domains of the product 
space. Supplementary theory is incorporated to explain polyphonic structure, 
involving pluralistic superimposition of independent fuzzy relational hierar-
chies. Broadly, fuzzy relational music perception is a rationalistic model that 
builds on generative theories and associative–statistical and connectionist ap-
proaches by providing a compact and coherent process for determining inter-
action across musical parameters. 
 

Keywords: Music perception, fuzzy set theory, fuzzy logic, resemblance re-
lation, implication relation, multiparametric congruence, concept individua-
tion. 
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1 Introduction: From Generative Theories to Fuzzy Relational Music 
Perception 
 
This article proposes a novel model of music perception, fuzzy relational music perception 
(hereafter, FRMP), which represents connections between musical features as fuzzy relations 
that are used to individuate and assemble concepts. This section provides theoretical founda-
tions in review of generative music theory and fuzzy music research. The music-theoretical 
notion of multiparametric congruence (MC), or simply “congruence”, is the relational principle 
that the model aims to explain and is defined as the correspondence between similarly stable 
elements of two or more parametric features. There is MC between such stable features as con-
sonant chords and phrase grouping onsets, or between phrase onsets and higher levels of met-
rical structure. Generative music theories and generative computational implementations im-
plicitly and explicitly incorporate congruent relations. However, it is determined that generative 
rule systems often result in interactional incoherence between parametric features. Fuzzy logic 
approaches to music generation are reviewed to explore techniques that can systematise and 
formalise congruent relations. The overview finds that current work in fuzzy music generation 
does not employ sets or relations between relevant levels of musical hierarchies to enable mod-
elling of the individuation of chords, grouping, tonality, metrical structure and other fundamen-
tal concepts of music perception. FRMP addresses this by showing that perception of fuzzy 
relations in music concerns two central domains, harmony H and grouping G, from which all 
parametric features (/concepts) are generated. The model centres on two types of fuzzy relations 
to describe MC: resemblance and implication, which are represented in an H ⨉ G Cartesian 
product space and incorporated by perception as necessary and sufficient conditions to individ-
uate and assemble universal music concepts.  
 
1.1 Multiparametric Congruence in Generative Music Theory 
 
Generative theories and generative computational implementations incorporate congruence to 
connect different parametric features of music (e.g., Schenker, 1935; Cooper and Meyer, 1960; 
Lerdahl and Jackendoff, 1983; Lerdahl, 2001; London, 2004; Hamanaka et al., 2006; Marsden, 
2010; Marsden et al., 2018). The core of the generative music research program, set out in A 
Generative Theory of Tonal Music (GTTM) (Lerdahl & Jackendoff, 1983) and Tonal Pitch 
Space (TPS) (Lerdahl, 2001), is a comprehensive conceptual and meta-conceptual system of 
formal and semi-formal rules that determines congruent connections between conceptual hier-
archies of musical structure. The basic formal rules of the GTTM-TPS program denote crisp 
and idealised syntactical structures, termed well-formedness rules (based on Chomsky, 1957), 
which set out the fundamental architecture or structural possibilities of musical representations. 
To enable interaction between these musical parameters, semiformal rules, termed preference 
rules (/constraints), prescribe congruent preferences between the well-formedness rules, in and 
across four components of the theory – grouping, metre, time-span reduction and prolongational 
reduction. For example, there is a preference rule for stable metrical and consonant harmonic 
phenomena to coincide and a preference rule for stable grouping elements and harmonic change 
to be coupled, among others. 
 
In a departure from the generative program, MC has been proposed to be a necessary and suf-
ficient criterion for concept individuation and assembly at indefinite levels of perceptual ab-
straction, in a capacity termed perceptual MC. Perceptual MC is argued to be an innate and 
domain-specific competence in a dedicated music faculty (Rawbone, 2021). The status of MC 
within the theory of perceptual MC is distinct from that of generative theory, where MC is a 
non-necessary and non-sufficient feature in the construction of musical representations. In per-
ceptual MC, two domains are thought to be privileged in the music faculty, harmony H and 
grouping G, which are grounded by pitch and time regularity percepts, respectively. All other 
musical parameters emerge from these pitch and time regularity percepts (Rawbone, 2021). The 
co-occurrence of similarly stable elements within a single parameter (/domain) is termed unip-
arametric congruence (UC). UC is the state of affairs where stable elements in a single domain 
coincide with other stable elements of that domain, or conversely, where non-stable elements 
coincide with other non-stable elements of a domain. Therefore, to extend the definition of MC 
above, MC is the co-occurrence of similarly stable UC elements across different parameters 
(Rawbone & Jan, 2020). It should be noted that since the elements of the two domains, H and 
G, are disparate phenomena, MC does not concern connections between elements (of H and G) 
that are actually similar, but only analogically similar. MC connects UC elements (/features) 
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that are similar only in terms of their degree of stability (i.e., their degree of UC), not their 
intrinsic structure.  
 
The framing and treatment of MC relations in generative theories and generative computational 
implementations can be challenged on a number of grounds. It is questionable whether many 
of the well-formedness rules of GTTM-TPS, which are crisp, idealised and universal music 
perceptual or cognitive categories, can form the basis of graded and flexible mental representa-
tions (Benjamin, 1984; Peel and Slawson, 1984; Gjerdingen, 2007; Muns, 2014, 2015). Ac-
cordingly, it is doubtful whether such can be a foundation for MC interaction (Rawbone & Jan, 
2020). For instance, metre and chords rarely exist as well-formed categories, being more com-
monly graded and non-isomorphic entities in many styles, historical periods and individual ar-
tefacts (Narmour, 1977; Gjerdingen, 1988, 2007; Rawbone & Jan, 2020). A tonic chord with 
an added seventh tone above the bass tone, such as a chord I7 in C Ionian, i.e., {C, E, G, B}, 
may broadly function as a tonic chord set, i.e., {C, E, G}, yet it is not a pure (/well formed) 
tonic chord set, owing to the added B tone. The added tone changes the essence of the harmonic 
set as a whole and in turn changes the local or global interpretation of consonance or stability. 
In TPS, the problem of added tones or non-chord tones, termed “"distinctive pitch classes”, is 
dealt with as a factor of the “chord distance rule”’ (Lerdahl, 2001, p. 55), which results in a faux 
graded categorisation of chord concepts. Indeed, since these distinctive classes are treated as 
separable and independent terms in the calculation, this results in fragmentation of the harmonic 
representation. These nuances must rather be represented within the harmonic entity itself, be-
cause they are actually intrinsic, not extrinsic, to the concepts as such. GTTM also involves 
faux graded harmonic (and metrical) representation by using tree-like elaborations in parent–
child hierarchies to integrate harmonic entities. However, the combinatorial “expanding out” of 
symbols in this generative process arguably does not enable true gradedness, because it does 
not allow elaborations to yoke to underlying musical essences. As noted, it is the essence of the 
harmonic concept as such that requires faithful representation. More broadly, it is tendentious 
whether well-formedness rules are viable universal perceptual categories because they involve 
fairly high-level structures that can be decomposed into constituent elements, and it is arguably 
those constituent parts that are more likely candidates for perceptual universals. The lack of 
foundation for well-formed structures is an emphatic example of the symbol grounding prob-
lem, which concerns the difficulty of models in cognitive science and artificial intelligence to 
justify a symbol–world connection (Harnad, 1990). The validity of well-formed categories in 
GTTM-TPS and their basis as, or their connection with, innate archetypes is suggested or as-
serted, rather than explained and justified. 
 
The other main rule-type of GTTM-TPS, the semiformal preference rules (/constraints), like-
wise poses a challenge for interpretation and implementation. The four central components that 
comprise the well-formedness rules and the interacting preference rules are organised in a cir-
cular, mutually-dependent architecture, where each rule presupposes the existence of others. 
Using this framework, it is an open question regarding how the system should be organised and 
parameterised for algorithmic implementation (Hamanaka et al., 2005, 2006, 2007; Hamanaka 
& Tojo, 2009; Marsden, 2010; Muns, 2014, 2015; Tojo, Marsden, & Hirata, 2018; Marsden et 
al., 2018). A further systemic limitation is that preference rules can result in incoherent repre-
sentations because the rules are actually abstractions of more concrete underlying relational 
principles. The relatively fixed and brittle preference rules often conflict with each other be-
cause they do not coherently represent underlying MC forces. For example, in the GTTM-TPS 
program, grouping preference rules are formulated to cue the fixation of a single monistic well-
formed metrical hierarchy. However, in contrapuntal textures, broadly construed, where several 
grouping streams occur simultaneously and with relative independence, the grouping prefer-
ence rules should in principle cue multiple metrical forms. Yet polymetre is not accounted for 
in the rule system, presumably because it would create ill-formed hierarchies (i.e., resulting in 
paradox). Generative computational implementations that involve systems that automatically 
classify textures under a single monistic metre, such as Temperley (2001), Hamanaka et al. 
(2005, 2006, 2007), Hamanaka & Tojo (2009), Marsden (2010), Tojo, Marsden, & Hirata 
(2018) and Marsden et al. (2018), therefore avoid paradox but implicitly court systemic inco-
herence. Systemic incoherence between other preference rules, such as between grouping and 
metre or between harmony and grouping, is endemic in many of the generative models cited, 
which connect or disconnect features on the basis of abstract constraints, resulting in either 
over-generalisation or over-specialisation. 
 
To address these issues of representation there is a need to look beyond finite well-formedness 
rules and relatively brittle preference rules, to capture the underlying graded MC relations that 
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connect UC features. In the theory of perceptual MC, concrete metre is generalised to abstract 
metrical structure, allowing freer, non-constituent hierarchies at high levels of grouping and 
metrical structure (Rawbone, 2021). In this approach, texture is suggested to be regular, or well-
formed, only at a low level, at beat or tactus levels, meaning only low-level units are fixed as 
basic incorrigible percepts. Ill-formed or pluralistic grouping and metrical structure may form 
at high levels, but always based on the low-level generators. Indeed, perception is free to gen-
erate ill-formed high-level structural representations but using the “building blocks”  of fixed 
concrete low-level percepts. Similar depictions of high-level metrical freedom and plurality 
have been theorised in Cone (1968), Benjamin (1984), Povel & Essens (1985), Lester (1986) 
and Rosenthal (1992), but current symbolic and inductive models of harmony and grouping 
generally do not explore such structuring. The idea of a multiplicity of graded and unbounded 
relations is antithetical to received formalistic notions of metrical grids, feature templates, and 
statistically-learned patterns (e.g., Longuet-Higgins & Steedman, 1971; Leman, 1995; Tem-
perley, 2001; Huron, 2006; Dhariwal et al., 2020). In formalising a coherent theory of grouping 
relations, then, it may be foundational that there are fixed low-level time-regular units, and that 
flexible formulation of UC groups is permitted at high levels of the G domain. Mutatis mutan-
dis, there must be a distinction between low- and high-level concepts in the H domain, where 
pitch percepts are fixed at low levels, but high levels of harmony and tonality are free to gener-
ate graded, generalised and pluralistic UC forms (Rawbone, 2021. 
 
The time-span reduction module of GTTM-TPS might be termed a meta-conceptual compo-
nent, because it involves the framing and curation of events based on the well-formedness and 
preference rules of the other components. To continue the argument above, a difficulty with 
verifying and implementing time-span reduction is interpreting the circular rule system (Tem-
perley, 2001; Marsden, 2010; Muns, 2015). Most computational implementations require some 
degree of human judgement in fixing the parametric rules to qualify salience in the time-span 
hierarchy (e.g., Hamanaka et al., 2006; Marsden et al., 2018). A response to the problem has 
been to develop a partially automated system of determining time-span significance by lever-
aging the influence of relative branch height in event tree hierarchies (Tojo, Marsden, & Hirata, 
2018; Marsden et al., 2018). However, it may still be countered that time-span reduction is 
questionable in principle, because it nonetheless arbitrarily and incoherently construes MC re-
lations based on a circular rule system design. By deriving time-span reduction from well-
formedness and preference rules, it is not possible to determine MC relations without arbitrari-
ness and systemic incoherence. More broadly, the lack of parsimony of the time-span reduction 
component diminishes the case that this module represents an actual property or process of 
perception or cognition. The implementation of time-span reduction involves considerable 
computational complexity, and so would be highly expensive in perceptual and cognitive re-
sources (Marsden, 2010). Thus, it seems not to be a viable process for determining MC con-
nections and individuating and assembling concepts. Toward constructing a system that ac-
counts for MC interaction and avoids incoherence, inefficiency and arbitrariness, it is necessary 
to invoke relations between features directly, without meta-conceptual frames. 
 
Prolongational reduction, which involves the hierarchical organisation of events based on har-
monic stability (Schenker, 1935), is likewise a tendentious meta-conceptual component of the 
generative program (Gjerdingen, 2007; Marsden, 2010), and questionable as a basis by which 
to frame MC feature interaction. There are a number of implementational difficulties with this 
component which, following the line of critique played out above, largely reduce to the circular 
rule system design. In generative theory, prolongational reduction is framed as the output factor 
of musical perceptual experience. This focus, which places harmony, or harmonic hierarchies, 
as the essence of music processing, implicitly delegates other parameters to a less significant 
role in the experiential arena. A focus on harmonic prolongation leads to systemic incoherence 
because prolongation is just one parameter in the interacting constellations of parameters that 
inform concept construction. This bias is characteristic of both symbolic and inductive music 
theories and computational models, which often overplay the role of harmony or harmonic pro-
longation at the expense of other parameters, and frequently model harmony in isolation (e.g., 
Longuet-Higgins & Steedman, 1971; Leman, 1995; Chew, 2001; Bharucha, 2009; Rohrmeier, 
2011). Problematically, harmony is incorporated as both an input factor (e.g., “harmonic 
length” preference rule (Lerdahl & Jackendoff, 1983, p. 84)) and an output factor in GTTM-
TPS, combining innate and acquired harmonic constraints, and conflating bottom-up and top-
down processes, and so making it difficult to position harmony, and harmonic concepts in gen-
eral, within the sequential steps of any proposed algorithm. 
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Complex harmony-related concepts, such as harmonic change, harmonic rhythm, etc., either 
involve ad-hoc or post-hoc preference rules (/constraints), including the “harmonic length” 
preference rule of GTTM, or are not incorporated into the theoretical or implementational sys-
tem. These concepts often do not connect coherently with the general harmonic prolongational 
form, resulting in systemic fragmentation, and are thus a challenge for computational imple-
mentation. It is noteworthy that while in some other areas of music research complex harmonic 
concepts are considered decisive factors for representation and interpretation (e.g., Lester, 
1986; Mirka, 2009), in generative approaches they have minimal or no significance. This posi-
tion can be explained by a lack of a formal framework to incorporate complex harmonic con-
cepts, possibly because a formal representation of harmony is itself at present largely inscruta-
ble. While harmonic prolongation is an intuitively reasonable, although limited, meta-concep-
tual metaphor, it may ultimately be a misleading abstraction in the modelling of harmony and 
tonal structure (Narmour, 1977). To address the issue of formalising harmony and tonal struc-
ture – and mutatis mutandis, formalising grouping and metrical structure – there must be a more 
direct and coherent measure of the connection between musical terms. In general, (fuzzy-)log-
ical techniques have been given only limited attention in music research and the cognitive sci-
ences for the explanation of musical structure (Cádiz, 2020). The present model aims to show 
that (fuzzy-)logical and set-theoretical connections can determine the boundedness and interac-
tion between musical terms through time, and thus may be used to fix concepts in perception. 
Accordingly, the present framework may suggest a revision of the traditional notion of har-
monic prolongation. 
 
The theory of harmonic prolongation in TPS leverages the idea of pitch space, which involves 
posited mental spaces for mapping pitch, chord and key relationships. A focal point of pitch 
space theory in TPS is the chord distance rule (discussed above), which calculates mental “dis-
tances” between pitches, harmonies and keys, usually in the context of a central tonic (pitch, 
chord, or key). Mental distance calculations are based on the principle of the shortest path (Ler-
dahl, 2001, p. 55), which means calculating distances according to the most direct route. While 
an ostensibly useful system for quantifying pitch and harmony relatedness, pitch space theory 
has little empirical support (Lerdahl, 2001). TPS itself involves highly complex mappings of 
inter-dimensional connections that would require extensive perceptual and cognitive resources. 
To enable (faux) graded harmonic connections between (crisp) well-formedness rules, addi-
tional well-formedness rules and post-hoc preference rules are incorporated. For instance, along 
with a formalisation of well-formed mental spaces in TPS (e.g., diatonic space, hexatonic space, 
etc.), surface dissonance constraints are appended to qualify pitch-space distance calculations. 
The use of post-hoc rule structures is one of a series of corrective strategies in generative theo-
ries that belie systemic incoherence. In general, representational music theories, including spa-
tial and geometric models, are often highly complex and contradictory (e.g., Riemann, 1905; 
Lerdahl, 2001; Tymoczko, 2012). The validity of spatial models such as pitch space theory 
(e.g., Lerdahl, 2001), two-dimensional graphs such as the Tonnetz (e.g., Riemann, 1905)), topo-
graphic models (e.g., Mazzola et al., 2002), and voice-leading geometries (e.g., Tymoczko, 
2012), can be disputed based on computational complexity (Marsden, 2010), inefficiency, 
structural inelegance, paucity of consilience between individual models, and poverty of empir-
ical support (Lerdahl, 2013). The present work appeals to a seemingly more elegant basis for 
harmonic categorisation, harmonic root support. Harmonic root support involves classifying 
pitch sets into chords by virtue of their combined support for a common root tone (Terhardt, 
1982; Parncutt, 1988; Milne, 2013). The theory of harmonic root support is analogous to the 
theory of pitch perception, since finding the root of a chord involves a similar process to deter-
mining the fundamental frequency or virtual frequency of a complex tone. An advantage of root 
support as a basis for harmonic categorisation is that it requires only a single dimension (a single 
harmonic function) to unify a harmonic set, and so is easily applied to many other harmony-
related concepts. It is by virtue of this principle that the graded structure of harmony will be 
shown to be intrinsically coherent. A generalisation of this notion (generalised harmonic root 
support, Section 3) also enables externally coherent connections between harmonic sets of do-
main H and broader coherence with domain G.  
 
In summation, the lack of parsimony of generative theories, and the systemic circularity and 
fragmentation in and between the four main components (grouping, meter, time-span reduction 
and prolongational reduction), suggest they are unlikely to have a basis in perception or cogni-
tion. It is questionable whether the generative research program in its current form reveals the 
nature of MC interaction or the process of concept individuation and assembly. 
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1.2 Fuzzy Music Generation 
 
In this subsection, fuzzy set theory and fuzzy logic literature are reviewed as tools for deter-
mining sets (/concepts) and relations in and between the musical domains. Fuzzy sets are an 
extension of classical (/crisp) sets in that they generalise the truth value of a set using graded 
membership functions. Similarly, fuzzy logic generalises the inference connectives of classical 
logic (i.e., OR, AND, NOT, etc.) by including graded connectives. That is, fuzzy sets and con-
nectives involve graded truth values and truth functions with membership values that lie be-
tween 0 and 1 (Zadeh, 1965). Fuzzy techniques have been used in recent years in a diverse pool 
of disciplines and technologies to model physical processes and human decision-making, par-
ticularly in machine learning (e.g., Alsinet & Godo, 2000; Fitzgerald et al., 2004; Armengol et 
al., 2015; Hüllermeier, 2015), fuzzy control systems engineering (e.g., Zhang & Liu, 2006; 
Azad & Shukla, 2021), various sub-disciplines of linguistics (e.g., Cock et al., 2000; Sun et al., 
2002; Novák & Perfilieva, 2004; Gupta et al., 2018), visual perception (e.g., Lakoff, 1987; Paz 
et al., 2019), and other areas of cognitive science (e.g., Massaro & Cohen, 1993, Yahia et al., 
2012). 
 
Important for modelling the interaction between musical categories is the idea of a fuzzy rela-
tion, which concerns the graded interconnectedness between sets. While classical relations be-
tween sets are crisp and bivalent, the notion of a relation is generalised to involve graded (fuzzy) 
interconnections (Zadeh, 1965). Classical sets and relations, and fuzzy sets and relations are 
suited to different applications. Some phenomena in the world can be best represented using 
classical sets and relations, while other phenomena are more optimally captured using fuzzy 
sets and relations. For instance, human familial biological relations are most suitably defined 
through classical relations. Biological sibling–sibling relations or parent–child relations involve 
crisp bivalent functions, where membership is either 0 or 1. By contrast, human friendliness 
sets and friendship relations involve fuzzy sets and fuzzy relations, which lie between 0 or 1, 
because there are varying degrees of friendliness and friendship (Bach, 1964). There are several 
types of relations used in fuzzy set theory and fuzzy logic, such as resemblance, partial order, 
equivalence, etc., which have various properties, such as reflexivity, symmetry, transitivity, 
etc., and these are often depicted in matrix form. The properties of fuzzy relations are conven-
tionally defined quite rigidly, although recent work in fuzzy set theory has weakened some 
properties to enable increased gradedness and generalisation. For instance, the properties weak 
fuzzy reflexivity (w-reflexivity) and weak fuzzy symmetry (w-symmetry) are more generalised 
forms of fuzzy reflexivity and fuzzy symmetry, respectively, giving them wider scope (Yeh, 
1973; Gupta & Gupta, 1996; Chon, 2017). In fuzzy logic, implication is often modelled as the 
boundedness or overlap between fuzzy sets, having a similar function as the intersection con-
nective, involving any t-norm operator (Zadeh, 1965). Fuzzy relations and their properties form 
the core of FRMP, presented in Section 5. 
 
It may be thought that there would be widespread acceptance of the common-sense notion that 
music concepts (/sets) and their relations are fuzzy. However, in music theory, crisp sets and 
their relations are more commonly adopted to depict musical entities and their interconnections 
(e.g., Forte, 1973; Buchler, 2001; Kuusi, 2001; Mazzola et al., 2001; Tymoczko, 2022). There 
is only a modest quantity of models that utilise fuzzy sets and fuzzy logic in music research, 
and these include systems addressing signal processing issues (e.g., Malcangi, 2008; Gonzalez-
Inostroza et al., 2015), fuzzy music emotion classification (e.g., Yang et al., 2006; Suitar, 2010; 
Kumar et al., 2015; Lucas et al., 2017; Hasanzadeh et al., 2019; Kasinathan et al., 2019), and 
fuzzy memory and music information retrieval (e.g., Weyde & Dalinghaus, 2001; Monti & 
Sandler, 2002; Deliège & Pedersen, 2007; He & He, 2019). The quantity of studies that use 
fuzzy techniques to address issues of music perception and generation, the concerns of the pre-
sent article, is limited (Cádiz, 2020).  
 
An early fuzzy music generation model, Elsea (1995), involves a system for representing fuzzy 
pitch sets in connection with other basic parameters. It introduces fuzzy sets and fuzzy logical 
operators for chord inversions, added chord tones and fuzzy logical chord progressions. How-
ever, the content of chord sets and the connectives of progressions emerge from the high-level 
control system, which computes traditional rules based on logic rooted in abstract musical–
linguistic commands, rather than explicating the structure of bottom-up generative principles. 
As such, it does not explain basic music concepts as sets and partition structures that determine 
the innate, universal and bottom-up categories used in perception. Tokumaru et al. (1998) in-
troduce systems of automatic harmonisation of melodies using fuzzy relational operators to 
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contextualise parameters, involving a genetic algorithm that learns optimal harmonisation so-
lutions. Similar to the criticism of Elsea (1995), a limitation of these models is that the central 
basic and complex concepts that are vital for music perception, relating to harmony and group-
ing information, are assumed and asserted as part of the high-level rule systems, rather than 
given formal explication and representation in terms of low-level fuzzy elements, sets, partition 
structures, connectives and relations. However, Tokumaru et al. (1998) incorporate connections 
between parameters that are based on, or analogous with, some preference rules of GTTM, 
highlighting such factors as tonic salience, note length, metrical depth, chord function and chord 
progression, in the determination of representations. 
 
Yilmaz & Telatar (2010a, 2010b) examine the cognition of two-part counterpoint and four-part 
harmonisation rules as practised in the eighteenth century. They introduce definitional fuzzy 
equations for pitch motion, interval size, consonance and dissonance, harmonic sets and voice-
leading rules. The fuzzy voice-leading rules pair pitch events in time undergoing serial motion 
in counterpoint, providing a fuzzy formalisation of parallel, similar, oblique and contrary mo-
tion. Similar to the criticism of the above fuzzy models, Yilmaz & Telatar (2010a, 2010b) focus 
on high-level rules presumably used in cognition, not fundamental processes and properties 
central for representation of MC relations in perception, and which are arguably intrinsic to 
concept formation. For instance, the models do not show how harmony is perceived by virtue 
of the interaction between interval content and inversion (cf. Parncutt 1988), among other intra-
parametric interactions. As such, fuzzy chord sets are not defined in terms of their interval 
content, inversions and partition structures, but emerge simply as a by-product of the high-level 
contrapuntal rules. Accordingly, the systems in Yilmaz and Telatar (2010a; 2010b) do not deal 
with the perception of harmony in general. It should be uncontroversial that we at least partly 
perceive a chord by virtue of such qualities as its interval content and inversion (Parncutt, 1988). 
A focus on high-level traditional contrapuntal rules, while important for modelling the specific 
style in question, is of limited use for understanding universal processes of perceptual concept 
individuation and assembly, which seem to be the primary activities carried out in the music 
perception module, or music faculty. In general, many of the models discussed do not provide 
a basis by which we can explore MC interaction for the representation of universal basic and 
complex concepts and their interconnections. 
 
While lacking a satisfactory framework, it can be argued that fuzzy techniques may still in 
principle be used to simulate universal relations between musical features involved in the fixa-
tion of concepts. Fuzzy techniques provide tools for addressing the symbol grounding problem 
(defined above). They are able to model concept individuation and assembly more faithfully 
than generative and associative–statistical systems, such as deep learning algorithms (cf. Civit 
et al., 2022; Golik et al., 2012; Dhariwal et al., 2020), because they can model the interaction 
of graded musical entities directly, avoiding meta-conceptual frameworks, and do not rely on 
the various problematical desiderata of concept-learning, such as dataset assimilation. Indeed, 
the notion of concept-learning may be questionable in principle because inductively-generated 
concepts still require some form of prior representation, or pre-interpretation, to enable recog-
nition or confirmation of concepts during the process of “induction” (Fodor, 2008). For in-
stance, the architecture of a connectionist system (supervised or unsupervised) must involve 
various forms of parameterisation or “framing” at the outset that necessarily inculcates myriad 
types of privileged information that substitute for innate human knowledge – which is to say 
that the notion of concept-learning is a regress argument (Fodor, 1975, 2008). Thus, there is a 
compelling analytical argument for a model of perceptual processing that is intrinsic, innate and 
universal, not based on obscure individuation mechanisms and empirically-guided concept-
learning.  
 
1.3 Rationale for Fuzzy Relational Music Perception 
 
This subsection develops the case for an innate graded relational system for fixing music con-
cepts, setting out a principled basis for FRMP. A dedicated music-perceptual module, a music 
faculty, seems to be requisite for coordinating MC interconnections. The existence of some 
form of music faculty has support across a number of disciplines, such as neuroimaging (e.g., 
Griffiths & Frackowiak, 1998; Patterson et al., 2002; Zatorre et al., 2002; Tavalage et al., 2004; 
Yost, 2009; Oxenham, 2012; Nunes-Silva & Hasse, 2013; Norman-Haignere et al., 2015), neu-
ropsychology (e.g., Peretz & Coltheart, 2003; Peretz & Zatorre, 2005; Peretz, 2006, 2009), and 
philosophy (e.g., Fodor, 1983; Schneider 2011). In music theory and cognitive science, Patel 
(2008), Katz and Pesetsky (2011) and Lerdahl (2013) invoke weak forms of music faculty, 
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which comprise shared capacities or shared neural structure between music and natural lan-
guage systems, and possibly other perceptual or cognitive systems. However, concept assembly 
in music using MC involves dissimilar entities and processes from those of natural language, 
so the extent of shared neural circuitry for these activities may be questioned prima facie, even 
if some operations are broadly parallel (Rawbone, 2021).  
 
Underpinning concept assembly is the principle of compositionality, which is the idea that basic 
atomic percepts and low-level concepts are combined to form hierarchies of complex concepts 
that preserve the lower-level rules or semantic structure of the basic percepts and low-level 
concepts (Fodor, 1975, 2008; Partee, 2011). Indeed, a central function of the music faculty 
seems to be to construct complex conceptual hierarchies from basic atomic percepts in a way 
that is compositional. It can be presumed that the fixation of basic percepts is grounded by 
sound-wave-to-neural transduction during initial processing in the cochlea, and that these per-
cepts are subsequently presented to the auditory cortex, the likely location of the music faculty 
(Cohen et al., 1995; Justus & Bharucha, 2002; Bharucha, 2009; Rajendran et al., 2018; Rajen-
dran et al., 2000; Rawbone, 2021). In Rawbone (2021), it is theorised that pitch and low-level 
time-regular units are the basic percepts. A basic pitch percept is individuated from a harmon-
ically complex function that is automatically encapsulated by reference to support of a funda-
mental frequency or integer multiples of a fundamental (virtual pitch) (Deutsch, 1998; Justus 
& Bharucha, 2002; Bharucha, 2009; Peretz, 2006, 2009). A basic, low-level time-regular per-
cept is coined through innate entrainment to the beat or tactus level through time (Rajendran et 
al., 2000; London, 2004). Since the basic percepts are thought to be universal, learning probably 
has a limited role in their coinage. Any influence of learning from the environment in this pro-
cess must occur early in life and developed to proficiency in the first few months (cf. Justus & 
Bharucha, 2002; Bharucha, 2009), since newborn and infant perception and comprehension of 
music concepts, and their relational interaction, is highly developed (Peretz, 2006, 2009).  
 
The basic percepts are privileged in the music faculty, since all other parametric features (/com-
plex concepts) emerge from them. Complex concepts are formed from the basic percepts of the 
two fundamental domains, harmony H and grouping G. As noted, the principle of composition-
ality is axiomatic for concept construction. Accordingly, the basic percepts are not revised 
through top-down processing, which would result in incomprehensible and incoherent complex 
concepts (Fodor, 2008). Basic percepts are incorrigible (non-revisable), but complex concepts 
are continually revised in a chain of causation that ultimately stems from composers and cul-
tures (Jan, 2007). Complex concepts, such as harmony, grouping, tonal structure and metrical 
structure, are continually re-represented during the unfolding of events, since emerging con-
cepts require adaptive revision to cohere to the unbounded interaction at various levels of ab-
straction. A framework is required to faithfully describe unbounded MC interaction. Pitch and 
time-regular units must be irreducible percepts grounded by transduction, but flexibly con-
nected and rearranged into complex concepts for indeterminate and graded high-level concep-
tual hierarchies. In H, tonality is a higher-level generalisation of harmony (inter alia), and har-
mony is a generalisation of pitch percepts (inter alia). Likewise, in G, metrical structure is a 
higher-level generalisation of grouping (inter alia), which, in turn is a higher-level generalisa-
tion of low-level time-regular units (inter alia). The qualification “inter alia” (meaning among 
other parametric features in these contexts) is important because complex concepts must in-
volve information based on the interaction between the domains. Indeed, low-level complex 
concepts (e.g., harmony and grouping), mid-level concepts (e.g., harmonic rhythm) and high-
level concepts (e.g., tonality and metrical structure) are formed from relations between H and 
G. 
 
A central thesis of this article is that for concept construction perception connects H and G 
based on MC relational strength. Perception uses innate knowledge of MC relations to deter-
mine similarly stable UC features between the domains. Indeed, since features are variably ab-
stract, hierarchical and graded, and emerge in an indeterminate process, perception must have 
innate knowledge of graded MC interconnections to determine similarly stable features to indi-
viduate and assemble concepts. In the following discussion, Ex. 1 (a)–(c), bar 2 of Mozart’s 
Piano Sonata No. 4, i (K. 282), will be used to demonstrate innate knowledge of MC relations. 
Ex. 1 (a) involves the original manuscript notation, with added Roman numeral harmony anal-
ysis and metrical dot structure. Ex. 1 (b) is the abstract reduction at the quaver level, and Ex. 1 
(c) is an abstract reduction at the crotchet level. 
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(a) 
 
 

(b)      (c)  

 
 

Example 1: (a) Mozart Piano Sonata (K. 282 i, b. 2); (b) reduction at quaver level; 
(c) reduction at crotchet level (based on Lerdahl, 2001, pp. 152–153). 

 
Referring to Ex. 1 (a)–(c), Lerdahl (2001, pp. 152–153) builds a case that a hierarchical analysis 
(involving various levels of abstraction) is critical for perception to determine unstable tones 
from stable tones. Perception fixes the harmonic background as an abstract B chord so that the 
E tone in the melody can be categorised as more unstable than the higher-level D tone, and the 
C tone can be classified as more unstable than the following higher-level B tone. That is, it is 
requisite that the higher-level B harmony is an abstract category for the D and B tones to be 
perceived on higher hierarchical levels than the E and C tones. This analytical principle gen-
eralises to all musics, and so seems to be an innate property of music perception. (See Deutsch 
(2013b) for a review of psychological models of hierarchical analysis.) 
 
Lerdahl’s argument can be extended to cover MC relations. A central premise of FRMP is that 
perception requires implicit knowledge of graded MC relations between H and G domains to 
categorise the hierarchically structured, graded and variable concepts that emerge in real-time. 
To abstract a B major harmonic category in Ex. 1 (a)–(c), perception must have implicit 
knowledge of MC relations to make sense of the unfolding relational connections between do-
mains. The stable UC harmonic category of B major must be relationally connected in percep-
tion to stable UC grouping (and metrical levels, more abstractly) at the quaver level (Ex. 1 (b)) 
and crotchet level (Ex. 1 (c)), because it is by virtue of the MC relations that the concepts are 
individuated as such. That is, the stable UC harmonic category is only classed as B because it 
forms a graded MC relation with stable UC levels of grouping structure. Such informational 
interconnections emerge arbitrarily in real-time, and so implicit knowledge of MC relations 
must be used to interpret them and build concepts accordingly. As a reductio argument, if real-
time perceptual interpretation using implicit knowledge of MC relations was not used, the har-
mony on beat 1 in Ex. 1 (a)–(c) could be categorised as various other possible chords, such as 
an E chord in second inversion (with a missing third), which corresponds to the sensory data 
presented at this time-slice. Only with innate knowledge of MC relations, incorporated in real-
time, can this time-slice be conceptualised under the general B major harmonic category. In-
nate sensitivity to the emerging MC relational context is thus essential for the appropriate in-
tentionally-constructed conceptual categories to be assigned. The upshot here is that since fea-
ture interaction is a fluid process, where interconnections emerge differentially between fea-
tures on every occasion – where graded emergent information in H (and graded tonal infor-
mation, more abstractly) is continually and arbitrarily cross-referenced with graded emergent 
information in G (and graded metrical structure, more abstractly) – intrinsic and innate 
knowledge of MC relations must be requisite in perception. The present approach assumes a 
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distinctly different system to the rigid and predetermined preference rules of generative theo-
ries, where well-formed representations are preferentially connected to each other at the outset. 
From the present perspective, it is not viable, as in generative theories, to use a series of prede-
termined preference rules to classify interaction between features for concept construction, 
since any such rules would be brittle and incoherent with the indeterminate fuzzy relational 
possibilities that emerge in real-time. 
 
It follows that any sets based on concrete pitch or time-regular units, such as scales, modes, or 
rhythmic groups, cannot in isolation individuate complex concepts such as harmony, grouping, 
tonality, or metrical structures, among others. While such concrete sets as scales and modes 
(e.g., Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, Locrian) are associated with to-
nalities, through perception, cognition and socio-cultural conditioning, they are not causally 
sufficient for individuating complex concepts in perception, since they involve only a single 
parameter, i.e., intervallic content or pitch chroma. Rather, in Ex. 1a–c, the key chord tones of 
the B major scale (tones B, D and F) emerge in real-time by virtue of the relational strength 
(MC interaction) between H and G at various structural levels. Also, non-chord degrees of this 
scale (tones C, E, G, and A) form owing to a differentially lower MC relational strength be-
tween the domains (Section 5). It seems that notions such as scale are ephemeral and indefinite 
because they emerge as by-products of MC relational strength during concept-building. While 
the socio-cultural commonality of particular serial sets, including scales, memes and schemata, 
are partly a product of the top-down causation of culture and cognition (Jan, 2007), such sets 
may have limited significance in the perceptual realm. Thus, the overarching moral to be drawn 
from Ex. 1a–c is that the parameters involved and concepts created in music are generated ex-
clusively by interaction between the two fundamental domains, H and G. Also, the individua-
tion of concepts in perception has been argued to be necessarily based on innate knowledge of 
MC. In the following subsection, fuzzy resemblance and implication relations will be shown to 
be the necessary and sufficient formal mathematical relations in and between the domains to 
individuate fundamental and universal music concepts. 
 
1.4 Theoretical Components of Fuzzy Relational Music Perception 
 
The above discussion suggests that abstract, hierarchical and graded MC relations in and be-
tween the domains are represented during perceptual processing. This subsection sets out the 
main theoretical components of FRMP, outlining the principles used to construct both domains 
and the fuzzy relational mathematics used to model domain interaction. 
 
Domains H and G concern disparate informational phenomena. Domain H is determined by 
generalised harmonic root support with respect to a main tonic pitch of a tonic chord. In con-
structing a domain, the root of a central chord generalises over all harmonic sets of H for a 
particular key or tonal area, quantifying UC in that domain. Generalised harmonic root support 
in H is mirrored, mutatis mutandis, in G by generalised time regularity, which governs over all 
grouping sets in G, and likewise quantifies UC in that domain. Two types of fuzzy relations are 
used in FRMP: fuzzy resemblance (also termed tolerance or compatibility (Ross, 2010)) and 
fuzzy implication. Fuzzy resemblance depicts the graded and variably abstract interconnections 
between the domains and fuzzy implication determines the boundedness (/overlap) between 
elements through time in one or both domains. Representations of fuzzy resemblance and im-
plication relations enable coherent and elegant formulations of concepts such as harmonic pro-
gression, harmonic change, harmonic rhythm, tonality, metrical structure, grouping, passing 
tones, etc. The two fuzzy relations are formally defined as follows:  
 

1. Fuzzy resemblance relation. Features of H form a fuzzy resemblance relation RR 
with features of G through time in a H ⨉ G Cartesian product space, modelling MC 
interconnectivity. RR comprise the properties of weak reflexivity, weak symmetry 
and antitransitivity.  
2. Fuzzy implication relation. Elements of domains form a fuzzy implication rela-
tion through time in a H ⨉ G product space. Fuzzy implication relations concern the 
fuzzy overlap or boundedness between set elements in the product space in one do-
main (RM) or both domains (RI) through time, involving a UC or MC connection, 
respectively, and leveraging the intersectional min operator. 
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These fuzzy relations enable the coherent integration of the two disparate domains. As noted in 
Section 1.3, since the domains are informationally distinct, graded, abstract and variable 
through time, without innate knowledge of these relations it would be impossible to glean in-
formational content from the whole unbounded and combinatorial musical landscape, and so it 
would be impossible to individuate and assemble concepts. In this sense, the music faculty, 
which is the entity that FRMP simulates, and the incoming musical information, are analogues 
of public-private encryption algorithms and public data. Music faculties are like systems with 
private keys that allow only us, as humans, to decode the public emergent fuzzy relations be-
tween the disparate domains of music presented to us by composers and cultures. That is, the 
decoding of the relational interconnections between the domains using fuzzy relations allows 
the intentionally formulated concepts of composers (and cultures) to be individuated and as-
sembled, amounting to an interpretable musical thought language (Rawbone, 2021). (Note that 
the composer of strings in the musical language and the perceptual decoder of that language 
can be, and in all cases of composers necessarily are, one and the same individual.) Fuzzy set-
theoretical resemblance (RR) will be shown to decode the analogical connection between do-
mains, and fuzzy-logical implication will be used to decipher the continuation of concepts in a 
single-domain, i.e., H or G (RM), or in both domains combined, i.e., H and G (RI). 
 
While these relations form the main components of FRMP, they rest on a significant body of 
definitional theorisation and formative equations that are set out prior to presentation of the core 
relations. To provide support for FRMP, each stage in the explication of relations and relational 
hierarchies is illustrated with musical examples which reveal the action of perception in repre-
senting musical structure. Ancillary theory is appended to account for pluralistic hierarchies, 
involving two or more independent but internally coherent conceptual hierarchies that are su-
perimposed onto a single musical surface, and where any relationship between the hierarchies 
is to a large extent opaque. While contrapuntal musical genres are paradigm cases of pluralistic 
relational hierarchies, many musics of the world incorporate such structuring, and so the capac-
ity to generate them seems to be innately endowed. 
 
1.5 Article Structure 
 
The remainder of the article is structured as follows. Section 2 illustrates that fuzzy sets are 
partitioned along H and G domain continua using intersecting triangular membership functions 
(triangular norms, or t-norms). The main operators incorporated for building fuzzy sets, do-
mains and implication relations are outlined. Section 3 shows how harmony is categorised using 
the theory of root support, and that the generalisation of this principle determines the partition 
structure of H. Section 4 shows that time regularity is the basis of grouping and builds a partition 
structure in G through the generalisation of time regularity. Section 5 is the central theory of 
this article, positing that the interconnectedness in and between H and G through time is repre-
sented in perception as fuzzy resemblance and implication relations, which enable the individ-
uation and assembly of concepts. Supplementary theory of plural relational hierarchies is in-
corporated to characterise polyphonic structure, broadly conceived. Section 6 evaluates the 
overall significance of FRMP for concept construction and contextualises the model in terms 
of inductive and symbolic frameworks. The limitations of the model are its informal compo-
nents, such as the manual determination of membership functions from partition structures and 
constraints, and the peripheral treatment of chromaticism and modulation. Future developments 
may include examining the role of plural hierarchies as a factor of cognitive complexity and 
providing computational implementations of the full model. 
 
 
2 Fuzzy Musical Sets, Domains and Operators 
 
This section lays out the fundamental mathematical principles of fuzzy musical domains, sets 
and operators. The ground for a fuzzy perceptual framework is prepared by providing an over-
view of classical set theory and classical logic. Crisp sets, connectives and operators are im-
portant foundations because they are special cases of (and subsets of) fuzzy sets, connectives 
and operators, and required for concretisation and consolidation of concepts. However, it is 
shown that crisp characteristic functions are limited in that they cannot show the common 
graded structure of sets in H and G, or the graded interaction between domain sets. Fuzzy ap-
proaches have been used to model real-world problems and decision-making on account of their 
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ability to capture gradedness in both external processes and conceptual representations (Ross, 
2010), and are here posited to be more precise in representing music sets, connectives and op-
erators. Fuzzy sets are thought to be constructed through time on the occasion of sense data, to 
echo Descartes’ classic epithet. The elements of sets are the automatically transduced and 
coined basic percepts of pitch and low-level time regularity. There is an overview of the main 
operators used in fuzzy set theory and logic, i.e., min, max, 1 –	𝜇!  (u), and Mamdami implica-
tion, which enable the construction and interaction of sets in H and G. 
 
2.1 Classical Set Theory and Logic 
 
In classical crisp set theory, a set, say X in the universe of scope U, is defined in terms of its 
finite elements or members (i.e., xn, where X = {x1, x2, …, xn}). The integer set notation 
{1,2,3,4,5,6,7} can be used to represent heptatonic scales mapped to the 12-tone chromatic 
scale, i.e., {C, C/D, D, D/E, E, F, F/G, G, G, A/B, B}, based on the theory of harmonic 
root support presented in Section 3. For instance, the tonality and modality of A Ionian is asso-
ciated with the Ionian scale [A, B, C, D, E, F, G]. Thus, using integer set notation, a root A 
major chord set A in the Ionian scale is defined as follows:  
 

𝐴 = {1,3,5}	
 
In crisp set theory, a given element x either belongs to a set, say X, or does not, i.e., x ∈ X or x 
∉ X. A Boolean characteristic function cX describes membership of X, where cX is either 0 or 1. 
Accordingly, given a chord set C, a musical pitch element x has the following Boolean charac-
teristic function: 
 

𝜒"(𝑥) = 	 0
1
0
, 𝑥 ∈ 𝐶,
, 𝑥 ∉ 𝐶.	

 
Using the key and scale of A Ionian and integer set notation, integer 3 (pitch C), corresponding 
to the 3rd step of the scale set, is normally considered a member of the A major chord set A 
(ceteris paribus), and so has a characteristic function cA of 1. The issue with this representation 
is that such a depiction does not show possible degrees of membership of set elements. Also, 
while an ostensibly useful framework, crisp set theory is a limited picture of the harmonic land-
scape, since pitch content (pitch chroma) does not exhaust the content of graded and complex 
conceptual harmonic representation. In perception, harmony also has the properties of interval-
lic content, inversion, spacing and doubling (inter alia), and its graded elements vary through 
time (Parncutt, 1988). In this respect, crisp set membership and characteristic functions are 
limited approaches to modelling musical concepts, because they ultimately capture only a single 
parameter (pitch chroma).  
 
The main operators that form the core of classical set theory and logic are intersection (/con-
junction), union (/disjunction), complement (/negation) and implication. To take the first, inter-
section, concerning crisp sets in a universe of scope U, the intersection of elements (u) of two 
abstract classical sets A and B is defined by the following expression: 
 

𝐴 ∩ 𝐵 = {𝑢 ∈ 𝑼 ∣ 𝑢 ∈ 𝐴	and	𝑢 ∈ 𝐵}	
 
The union of two abstract classical sets A and B in the universe of scope U is defined by the 
following expression: 
 

𝐴 ∪ 𝐵 = {𝑢 ∈ 𝑼 ∣ 𝑢 ∈ 𝐴	or	𝑢 ∈ 𝐵}	
 
Since in perception the interaction between domains H and G is graded, the aggregation of sets 
by crisp intersection and union do not allow capture of the possible connections that emerge. A 
further standard operator, material implication, is used in crisp logic, involving an implication 
relation R (→) between sets. For abstract sets A and B in the following, A entails B:  
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𝑅 = 𝐴 → 𝐵 = ¬	𝐴 ∪ 𝐵	

 
Prima facie, crisp material implication seems to have no place in music perception, since events 
in musical structure do not logically entail each other. Also, material implication would require 
that the semantic criteria of sets fall under well-defined premises, which does not seem to be 
the case in music. In the unfolding of music events, implication can, however, be captured by 
the graded boundedness or overlap between elements of sets through time, which requires a 
representation of the graded relations between terms. Crisp complement (/logical negation) 
likewise seems to be inadequate for modelling music perception because crisp sets, such as 
crisp pitch or chord sets, virtually never have absolute complements in music, but involve 
graded complements, or graded negations. Crisp complement is expressed in the following for-
mula, which is read as u is not an element of set A in the universe of discourse U. The A with a 
bar symbol above refers to complement, and broadly corresponds with the negation operator of 
classical logic, i.e., ¬ A. 
 

𝐴 = {𝑢 ∣ 𝑢 ∈ 𝑼	and	𝑢 ∉ 𝐴}	
 
2.2 Fuzzy Triangular Sets and Domain Partition Structures 
 
Fuzzy triangular sets and domain partition structures are fundamental to FRMP. Fuzziness, or 
gradedness, is sometimes problematically conflated with uncertainty and vagueness. To con-
sider the first characterisation, uncertainty, it should be noted that probabilistic techniques and 
fuzzy techniques are mutually exclusive notions (Klir and Yuan, 1995). With respect to the 
second characterisation, vagueness, considering fuzzy processing as imprecise is antithetical to 
the innate and intrinsic capacity to perceive precisely graded musical concepts. It is therefore 
preferable to view fuzzy sets and relations as involving precision gradedness, to avoid confu-
sion with probability or possibility theory, and to limit association with vagueness and impre-
cision.  
 

A fuzzy membership function maps elements in a domain of discourse to a value between 0 and 
1. Each element (u) of a universe of discourse U belongs by degree to some fuzzy set X, depicted 
with a graded membership function	𝜇! (u), expressed in Eq. (1).  
 

																																							𝜇!
∼
(𝑢) ∈ [0,1],where	𝑋

∼
= 0(𝑢, 𝜇!

∼
(𝑢)) ∣ 𝑢 ∈ 𝑼J                               (1) 

 
There are a number of standard membership functions used in fuzzy logic, such as triangular, 
trapezoidal, Gaussian, sigmoid, etc. (Klir and Yuan, 1995). Non-linear membership functions, 
particularly bell-shaped functions, may usefully characterise several musical phenomena, such 
as the added tones of chords, but are computationally expensive and may not effectively depict 
harmonic root support, so are not explored here. Triangular membership functions, i.e., trian-
gular norms (t-norms) and triangular conorms (t-conorms) (also termed S norms), are used to 
generate the domain structure of H and G, employing the min and max operators (Zadeh, 1965) 
on sets and relations (Section 2.3). T-norm and t-conorm membership functions are represented 
as linear, although domains H and G are actually based on non-linear logarithmic scales. Fig. 1 
shows (a) graphical and (b) algebraic representations of a t-norm function for a fuzzy set A with 
membership function μA (x). 
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𝜇$(𝑥) =

⎩
⎪
⎨

⎪
⎧

0 if 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 if 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐 − 𝑥
𝑐 − 𝑏 if 𝑏 ≤ 𝑥 ≤ 𝑐

0 if 𝑥 ≤ 𝑐 ⎭
⎪
⎬

⎪
⎫

	

 
(a)  (b) 
 

Figure 1: (a) Graphical and (b) algebraic representations  
of a fuzzy triangular membership function (Yahia et al., 2012). 

 
Fuzzy sets have the usual properties of crisp sets: associativity, distributivity, idempotency, 
identity, transitivity and involution. However, the law of identity, law of excluded middle and 
law of contradiction do not hold for fuzzy sets (Zadeh, 1965). Both domains, H and G, are 
proposed to be partitioned by t-norm sets that have two points of intersection, cutting the sets 
into three equal parts along the degree of membership axis (Fig. 2 and Fig. 3). Domain H will 
be shown in Section 3 to be based on generalised root support, constructed from hierarchical 
levels of perfect unisons, perfect fifths and thirds (major). Domain G will be shown in Section 
4 to be based on generalised time regularity, constructed from fuzzy regular hierarchical dura-
tions. (The relative duration of grouping level sets in G are as follows: maxima = 8; longa = 4; 
breve = 2; semibreve = 1; minim = .5; crotchet = .25; quaver = .125; semiquaver = .0625.) 
 

 
Figure 2: Triangular membership function 
partitioning of the H domain (set to 
[1,3,5]). 

Figure 3: Triangular membership function 
partitioning of the G domain (set to longa). 

 
2.3 Basic Fuzzy Operators 
 
Basic fuzzy operators min, max and 1 – 𝜇!(u) (Zadeh, 1965) are used in FRMP to determine 
intersection, union and complement, respectively, although other t-norms, t-conorms and com-
plement operators may in principle be substituted. Mamdami implication (Mamdami and As-
silian, 1975), which incorporates the min operator, is applied to capture overlap between con-
ceptual entities in a single domain through time (implication in both domains is examined in 
Section 5). 
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2.3.1 Fuzzy Intersection 
 
Fuzzy intersection of sets can be calculated using the min t-norm (Zadeh, 1965). In Eq. (2), the 
min t-norm operator is used to determine the intersection of two fuzzy sets A and B in an abstract 
universe of discourse U. The membership function has a value between 0 and 1. 
 
																																										𝜇𝐴

∼
∩ 𝐵

∼
(𝑢) = min	(𝜇𝐴

	∼
	(𝑢), 𝜇𝐵

∼
(𝑢)) ∣ 𝑢 ∈ 𝑼																	                    (2) 

 
Intersection using the min operator is represented diagrammatically in Fig. 4 for fuzzy ordered 
chord sets [5,7,2] and [2,4,6] in H, indicated with an emboldened triangular line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Fuzzy intersection of [5,7,2] and [2,4,6]. 

 
The H domain established is the key of C Ionian (C = 1, D = 2, E = 3, F = 4, G = 5, A = 6, B = 
7), and the fuzzy intersection of sets [5,7,2] (G, B, D) and [2,4,6] (D, F, A) may correspond to 
what is traditionally described as a G major dominant ninth chord in second inversion (with 
added 7th and 9th tones). However, points along the intersect correspond to different semantic 
information. For a G major ninth chord intersect in second inversion, the bass, the pitch D of 
the ordered set [2,4,6] (D, F, A), is strongly salient, as is the root pitch G of the ordered set 
[5,7,2] (G, B, D). This amounts to an admixture of these qualities that results in a low overall 
membership function on the intersect. Note that this intersect accords with musical intuition: in 
the H domain, low membership should naturally be given to intersects where the overlap is 
minimal, because there is no chord category suggested in particular. By contrast, maximal over-
lap would be a higher membership, because a single chord category would be more strongly 
inferred. The partitioning structures of H and G integrate several variables for perpetual cate-
gorisation. The H domain synthesises intervallic content, inversion, spacing and doubling, and 
the G domain combines instantiated events, relative textural density, proximity and serial par-
allelism (Sections 3 and 4, respectively). 
 
2.3.2 Fuzzy Union  
 
The union of two fuzzy sets A and B in an abstract universe of discourse U can be calculated 
using any t-conorm (/S-norm). The max operator (Zadeh, 1965) in Eq. (3) is used in FRMP, 
yielding a membership function with a value between 0 and 1. 
 
																																										𝜇𝐴

∼
∪ 𝐵	

∼
(𝑢) = max	(𝜇𝐴

∼
(𝑢), 𝜇𝐵

∼
(𝑢)) ∣ 𝑢 ∈ 𝑼                    (3) 
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The max operator is demonstrated in Fig. 5 for the fuzzy sets [5,7,2] and [7,2,4] in H. The 
emboldened line shows the fuzzy union of these sets, and is read as either [5,7,2] or [7,2,4]. 
Union in H explains the notion of harmonic functionality in traditional harmonic theory (Rie-
mann, 1905), where two or more chords can substitute for each other in the context of an overall 
tonic key. Functionally equivalent sets have a similar role on account of their (broadly) similar 
perceptual uniparametric congruence (UC). In Fig. 5, a G major chord [G, B, D] / [5,7,2] and a 
B diminished chord [B, D, F] / [7,2,4] fuzzily substitute for each other because they have a 
similar functional role in the tonal (and modal) structure, corresponding to a similar position in 
the partition structure. Thus, union provides a tool to categorise (and explain) the perceptual 
flexibility of chord set substitutes. The max operator is also important for the assembly of fuzzy 
relations, expanding a relation into a larger support set on a product space, which is a focus of 
Section 5. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Fuzzy union of [5,7,2] and [7,2,4]. 
 
2.3.3 Fuzzy Complement and Negation 
 
Similar to crisp complement, fuzzy complement (corresponding with fuzzy negation) expresses 
the (approximate) converse elements of a given set in a domain. In a universe of discourse U, a 
fuzzy set, say X, has elements (u) with a membership function 𝜇!(u) between 0 and 1. The 
membership function of the fuzzy complement of X is the fuzzy converse function in the do-
main, where elements have a value between 0 and 1, shown in Eq. (4) (Zadeh, 1965). 
 

																																																																								𝑋
∼
= 1 − 𝜇!

∼
(𝑢)                                                         (4) 

 
The fuzzy complement of the ordered chord set [5,7,2] (G, B, D), in an H domain set to C 
Ionian, is shown in Fig. 6 by an emboldened line. In this case, the fuzzy complement should be 
understood as comprising elements that are not [5,7,2]. Fuzzy complement is notably distinct 
to crisp complement, because as shown in Fig. 6, it is possible for a single point on a fuzzy set 
membership function to have the same or similar degree of membership as its fuzzy comple-
ment (because the functions overlap). This conflicts with crisp set theory and classical logic, 
since crisp sets have the exact converse elements – and thus the exact converse characteristic 
function – as their crisp complements. The fuzzy set theory notion of complement, or its equiv-
alent in logic, negation, is important for several aspects of music perception, such as for depict-
ing graded harmonic change. Indeed, harmonic change at a time-point usually negates a prior 
harmonic entity by some degree, rather than absolutely. Also, since there is fuzzy harmonic 
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change, there must be fuzzy harmonic rhythm, which is the rhythm (ratio of time durations) of 
fuzzy harmonic change, among other graded harmonic and grouping concepts. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Fuzzy complement of [5,7,2]. 

 
2.3.4 Fuzzy Implication 
 
As indicated above, implication in music does not correspond with the material conditional of 
classical logic, because in music one term does not entail another. Rather, fuzzy implication is 
characterised using expressions of coupling or boundedness between terms, where a graded 
truth value is differentially preserved through time, involving the notion of graded conceptual 
overlap. Music perception constructs fuzzy-logical strings of graded truth-functionality, using 
fuzzy implication. The standard Mamdami implication relation RM (Mamdami and Assilian, 
1975) is elected, leveraging the min operator to connect fuzzy sets, say X and Y, in a single 
domain, shown in Eq. (5). Implication explains various types of concept assembly and classifi-
cation, such as how a series of pitches are categorised as a unified chord through time by virtue 
of their support for a common root, discussed in the following section. 
 

																																												𝑅& = 𝜇!
∼
→ 𝜇'

∼
(𝑥, 𝑦) = min	[𝜇!

∼
(𝑥), 𝜇'

∼
(𝑦)]                    (5) 

 
 
3 Harmony Domain 
 
Harmonic root support and generalised harmonic root support determine the perception of 
harmonic sets and partition structure of H, respectively. The notion of root support was 
broached in the early-eighteenth century with the theory of fundamental bass, where a single 
pitch, the root, provides a means to characterise a chord as a unified object that retains its iden-
tity in inversion (Rameau, 1722). Root support has been modelled formally more recently as an 
analogue of the pitch-perceptual process of categorising a complex tone in terms of its funda-
mental frequency or virtual frequency, where low-integer multiples of a fundamental frequency 
are defining harmonics (Terhardt, 1979, 1982; Parncutt, 1988, 1997, 2011; Milne, 2013). The 
four central constraints on root support are intervallic content, inversion, spacing doubling. 
While harmonic root support is important for categorising individual fuzzy chord sets, general-
ised harmonic root support is shown to be the basis for constructing H. Generalised root support 
over n harmonic sets in H involves maximising the abstract hierarchical arrangement of thirds 
(M3/m3), perfect fifths (P5) and perfect unisons (/octaves) (P1) over the root of a key chord to 
determine a tonal hierarchy. It is assumed that the constraints act to construct sets and domains 
in working memory in real-time perception of music. 
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3.1 Harmonic Root Support 
 
In Parncutt (1988), a harmony categorisation algorithm is presented where intervals of a chord 
set are weighted based on degree of root support, leveraging an analogy with pitch perception 
in a process termed sub-harmonic matching. Intervals that support a particular sub-harmonic 
root are called root-supporters and intervals that detract from a root are root-detractors: the 
unison (P1)/perfect octave (P8), perfect fifth (P5) and major third (M3) are strong root-support-
ers; the minor seventh (m7) and major second/ninth (M2/M9) are weak root-supporters; the 
minor second (m2), perfect fourth (P4), tritone (TT), minor sixth (m6), major sixth (M6) and 
major seventh (M7) are root-detractors; and the minor third (m3) is thought to be inert (Parncutt, 
1997). The Parncutt algorithm determines a score of root ambiguity for a given chord set, such 
as ascribing low root ambiguity to common major and minor chords, and moderate root ambi-
guity to diminished, half-diminished and augmented chords (Parncutt, 1988). These calcula-
tions accord with intuition and empirical evidence: most listeners find common major and mi-
nor triadic chords to be more stable harmonic entities than other types of chords (Krumhansl, 
1990; Justus & Bharucha, 2002; Huron, 2006). Fig. 7 shows root-supporting and root-detracting 
harmonics and intervals on the harmonic series. Pitch intervals that correspond to low-integer 
harmonic ratios occur early in the series (see Bernstein, 1976). Note that the root-support algo-
rithm effectively models innate harmonic perception, since, in principle, knowledge of root 
support does not require learning or enculturation (corresponding with the theorisations and 
findings of Lerdahl, 2001; Gill and Purves, 2009; Milne, 2013; Savage et al., 2015; although, 
cf. Gjerdingen, 1988; Krumhansl, 1990; Justus & Bharucha, 2002; Bharucha, 2009; Huron, 
2006; Patel, 2008). The Parncutt (1988) algorithm accords with cross-cultural expectations: the 
most common scale sets and harmonic lexicons found in cultures across the world use P1/P8, 
P5 and M3/m3 above a key root (Gill and Purves, 2009; Savage et al., 2015), suggesting a 
universal preference for perceptual or cognitive representations based on harmonic root sup-
port. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Harmonic series denoting strong and weak root-supporting  
harmonics/intervals and root-detracting harmonics/intervals  

(+ and – indicate differences in cents with equal temperament). 
 
The root support of a key chord, i.e., [1,3,5], is generalised over n fuzzy sets to form H domains 
in the construction of tonal hierarchies. Generalised harmonic root support therefore regulates 
degree of UC over the tonal hierarchy. Stable UC decreases over the domain partition structure 
incrementally with each set (from right to left in Fig. 2). The process for determining root sup-
port and generalised root support can be shown using the concept of an interval inclusion hier-
archy, where P1, P5, and M3/m3 ideally observe an approximate constituent hierarchy (Lon-
guet-Higgins, 1962a, 1962b; Balzano, 1982; Lerdahl, 2001; Mazzola et al., 2002; Rawbone, 
2021). The inclusion hierarchy comprises constituent pitch series in a single dimension (H), 
involving root P1 intervals, a series of m2/M2, a series of m3/M3 and a series of P5 (Fig. 8). 
Hierarchical inclusion acts both on individual chord sets and complete H domains, although the 
causative orientation of the hierarchy differs with respect to each. A chord set is constructed 
based on the preference for hierarchical inclusion of pitches that correspond to the spectral 
harmonic content of a single chord set root: M3/m3 ⊂ P5 ⊂ P1. By contrast, since root support 
generalises over a number of roots in H to determine tonal structure, the converse orientation 
is required: hierarchical inclusion of pitches corresponds to n roots (P1) over an abstract H 
superset: M3/m3 ⊃ P5 ⊃ P1. That is, to construct a single chord set (with a single root), an 
orientation is required where P5 and M3/m3 (in this order of preference) support a single P1 
root (harmonic root support). To construct n fuzzy chord sets in an H superset to abstractly 
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determine tonal structure, multiple P1 roots must be invoked by M3/m3 and P5 intervals, in this 
order of preference (generalised harmonic root support). A further condition is assumed to de-
fine a particular tonic: the abstract n roots of H must be configured to one particular sub-har-
monic tone at the highest levels of structure through interaction with G, involving MC relations 
between the domains (Section 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 8: Schematic diagram of superimposed interval sets  
in a single dimension (inclusion hierarchy). 

 
In contrast to the proposed weak root-support properties of M2, espoused in Parncutt (1988), 
any M2/m2 interval set, such as a standard scale set (e.g., pentatonic or heptatonic), is here 
thought to be redundant (/inert) in the perceptual construction of H. Indeed, M2/m2 intervals 
seem to emerge through supervenience on higher-level interval sets in the inclusion hierarchy 
(although, cf. Balzano, 1982; Pearce, 2016). Accordingly, where a tritone (T) appears in a 
M2/m2 hierarchy in H (equivalent to two stacked m3 intervals), or in a scale set (e.g., between 
the seventh and fourth degrees of major scales), it emerges only as a limitation in maximising 
n roots of n chord sets in the inclusion hierarchy. Similar to chord sets, all interval sets in H are 
incrementally harmonically root-detracting (increasingly non-stable UC) with successive steps 
away from the key chord root. Since this harmonic picture may be captured by a single complex 
mathematical function (in one dimension), spatial models (with multidimensional mappings), 
such as pitch-space geometries or twisted tori – representing pitch, harmonic, or tonal relations 
– are questionable in principle (as noted above), since there is arguably no basis by which to 
invoke more than one dimension for harmonic perception (cf. Lerdahl, 2001; Tymoczko, 2012). 
It is possible, nevertheless, that spatial models are verifiable properties of higher-level cogni-
tion, but the validity of such remains an open question, requiring further theoretical support and 
empirical testing. In any case, spatial models seem not to characterise the perceptual sphere, 
which is the focus of the present theory.  
 
3.2 Constraints on Harmonic Root Support 
 
It has been posited that there are four central constraints on harmonic root support used for 
determining harmonic sets: intervallic content, inversion, spacing and doubling (based on 
Parncutt, 1988). The significance of intervallic content for root support has been outlined above. 
The constraint for inversion concerns the increased root support when root support intervals are 
lower relative to other tones in a harmonic set. The spacing constraint refers to the greater root 
support with larger relative separation of pitches. The doubling constraint, such as through 
unison or octave duplication, relates to increased root support when doubling root-support in-
tervals, and conversely, the decreased root support when doubling root-detracting intervals. It 
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is proposed that the membership functions of sets and the partition structure of H automatically 
encapsulate these constraints. However, a formal algorithm is not here provided which, given 
digital music parameters as input (e.g., MIDI), synthesises the constraints in terms of a specific 
mapping to the partition structure and provides membership values as outputs. At present, the 
process is determined manually. Fig. 9 shows two fuzzy intersections with an ordered fuzzy set 
[1,3,5], which is the key chord of the domain. The intersect peaking at l1 (in bold) involves the 
ordered fuzzy sets [1,3,5] and [3,5,7], and the intersect peaking at l2 (in bold) involves the 
ordered fuzzy sets [1,3,5] and [5,7,2]. The intersects are calculated using the min operator (Eq. 
(2)). Importantly, the intersections at l1 (μ = .66) and l2 (μ = .33) mark first and second inversion 
chord sets, respectively, but also mark chords a third and fifth higher than the key chord set, 
respectively, since the combined interaction of the constraints (inter alia) dictate mapping to 
the partition structure (although, as noted, a mechanism has not yet been formalised that pre-
scribes this interaction precisely).  
 
 
 
 
 
 
 
 
 

Figure 9: Partitioning in the H domain synthesising constraints  
intervallic content, inversion, spacing and doubling. 

 
A synthesis of the four constraints is not possible using crisp set theory. Chord classification 
with crisp sets can only capture a single variable, and all four constraints are required to deter-
mine sets. A single variable, such as intervallic content, is insufficient for determining root and 
classifying harmony. It is undesirable to represent chord sets solely in terms of intervallic con-
tent (or inversion, say) because the four constraints are interconnected and graded. For example, 
with H configured to C Ionian, some l2 intersection of [1,3,5] and [5,7,2] may be both a second 
inversion tonic chord, by degree, and also a root position dominant chord with added tones, by 
degree. If the ordered intersection is a second inversion tonic chord set, i.e., [5,7,1,2,3], the 
more dissonant added tones, i.e., subset [7,2], would presumably be less perceptually salient 
than the consonant tones, an effect which can be achieved through varying the constraints of 
spacing or doubling. The upshot is that the required interaction of all four constraints necessi-
tates fuzzy membership functions in a fuzzy partition structure. 
 
The triangular partition structure of H also allows greater integration of intervallic content than 
crisp set functions, since ordered fuzzy chord sets can be extended by adding tones from adja-
cent sets. Using the min t-norm operator (Eq. (2)), the 7th or 9th above any chord can be ap-
pended to a main set by intersecting the main set with an adjacent set. Such added tones are 
either weak root-supporters or root-detractors. In Fig. 9, a seventh chord can be made by ap-
pending the [7] to the key chord [1,3,5], applying the min operator to aggregate the key chord 
set [1,3,5] and the adjacent set [3,5,7]. This may produce such an ordered intersectional set as 
[1,3,5,7], termed a chord I with an added seventh. The [1,3,5,7] ordered intersect has a maxi-
mum membership presumably reaching just short of the l1 level (μ = .66), assuming inversion, 
intervallic content, spacing and doubling are minimally affected, that is, where the added sev-
enth note has a limited effect on overall intersect membership. However, the intersection of 
[1,3,5] and [3,5,7] can also result in various other fuzzy classifications, depending on the inter-
acting strengths of the four constraints (including the particular root-support qualities of the 
added tone(s)). For instance, the same min operation on chord I [1,3,5] with chord III [3,5,7] 
can also generate the ordered intersectional set [3,5,7,1]. This latter ordered intersect, ceteris 
paribus, has a lower membership (closer to the l2 level (μ = .33), and may more strongly suggest 
chord III than chord I, even though the added tone above the chord bass, i.e., [1], has weak root 
support for chord III and strong root support for chord I. The increased root support for chord 
III is based on the greater significance of inversion ([3] in bass) over interval content (the 
“added tone” [1]) in this case, where the ordered intersect [3,5,7,1] would most strongly support 
the lowest tone. 
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A limitation with t-norms is that they cannot provide an account of 11th or 13th added chord 
tones. Non-linear membership functions may feasibly account for such extensions, because 
their curved functions can extend across a greater number of sets. However, since 11th and 13th 
intervals are always root-detractors, it is questionable whether such should legitimately be in-
corporated into harmonic representations, because these intervals by definition do not provide 
harmonic root support – they are de facto non-harmonic. The underlying question here is 
whether it is valid for perception to categorise tones into chord sets when those tones detract 
from the essence of those sets, because such a framework contradicts the principle of root sup-
port as a basis of harmonic categorisation. However, while integral, these questions of repre-
sentation concerning the use of non-linear functions are beyond the scope of the present thesis, 
and so must be left for future work to explore. A further significant point is that it should be 
axiomatic that in the process of constructing H sets, any and all tones can be abstracted away 
from their crisp transduced percepts to determine a fuzzy harmonic set. For example, a crisp 
singleton chroma set, say {1}, ceteris paribus, is interpreted as a harmonic entity that generates 
strong root support for the fuzzy ordered set [1,3,5]. Accordingly, {1} may produce a near-
maximal membership value for the [1,3,5] set, above the l1 level in Fig. 9, although may or 
may not reach the possible maximum (i.e., μ = 1), because its “missing” intervallic content, i.e., 
[3,5], could lower net root support. 
 
The present framework can offer only an indirect explanation of chromaticism and modulation, 
although as supplemental theorisation it is nevertheless significant. Modulation (/tonal recon-
figuration/tonicisation) occurs when there is a change of key chord set in H, where the domain 
is reconfigured to a novel chord in a novel tonal hierarchy to satisfy generalised root support. 
Ex. 2, from “I Get Around” (1964) by The Beach Boys, illustrates representation of generalised 
root support, hierarchical inclusion of intervals, inversion, added chord tones and modulation. 
As discussed, set membership is approximated based on intuitive manual integration of the four 
constraints, it is not calculated formally. The harmonic progression in Ex. 2, formulated in Fig. 
10, involves modulation, or tonicisation, moving from G Ionian/Mixolydian {G, A, B, C, D, E, 
F, F♯} to A harmonic minor {A, B, C, D, E, F, G} in bar 23. The tonicisation uses a pivot (E 
tone) in bar 21, which is a tone or chord common to two keys (H domains) that acts as a point 
of direct connection between them (Piston, 1941). Since the G tone of the E major chord set 
[E, G♯, B] in bar 23 is a root-detractor of the key chord set [G, B, D], contradicting the gener-
alised root support of the G Ionian/Mixolydian domain, a novel domain (novel tonality), A 
minor harmonic, is initiated to avoid paradox. The E major fuzzy chord set [E, G, B], provides 
strong generalised root support for the A harmonic minor domain, because the lowest tone E of 
[E, G, B] is a perfect fifth (P5) above the root tone (A) of the key chord set [A, C, E]. The 
process of generalised root support is determined by the inclusion hierarchy for H domains set 
out above, i.e., M3/m3 ⊃ P5 ⊃ P1/P8 (Fig. 8), although the individuation of harmonic and tonal 
key chord roots also requires interconnection with domain G (Section 5). 
 

 

 
Example 2: Harmonic analysis of “I Get Around”, modulating between  

G Ionian/Mixolydian and A harmonic minor. 
 
When the domain switches back to G Ionian/Mixolydian in bar 41, it uses an intersectional pivot 
chord that combines [F, A, C] and [C, E, G] sets, resulting in the ordered intersect [C, E, F, G, 
A], where the subset [E, G] is implicit in this instance, meaning not sounded. (However, as 
pointed out above, many different points may be elected along an intersect function, corre-
sponding to the variable action of constraints.) The particular intersectional point in question 
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has a low membership value, presumably located below the l2 level (see Fig. 9 and Fig. 10), 
falling outside the main chord categories and thus being ambiguous with respect to root. This 
illustrates the symbiotic connection between the constraints intervallic content and inversion 
(and to a lesser degree in this case, spacing and doubling), since while the intersectional point 
can be categorised as an F major chord set in second inversion (i.e., chord VII in G Mixolydian) 
owing to its intervallic content, its bass note also supports a C major chord set (i.e., chord IV in 
root position in G Ionian/Mixolydian). Broadly, the min operator enables synthesis of the con-
straints, showing fidelity to the rough and tumble of the interactive and graded harmonic land-
scape. It can be concluded from Ex. 2 that holding a fuzzy set in perception based on root 
support enables a coherent representation of the graded external musical landscape. This model 
of perception may be contrasted with idealised generative grammars, where the internal princi-
ples of interaction are fixed and so do not flexibly incorporate such harmonic ambiguities. Crisp 
theoretical categories do not mesh with graded musical structure and fuzzy perceptual pro-
cesses. 

 

 
Figure 10: Approximate path through harmonic set functions in  

G Ionian/Mixolydian and A harmonic minor H domains (“I Get Around”). 
 
In summary, it has been shown that fuzzy sets in H enable representation of the graded har-
monic and tonal landscape. The sets and partition structure of H are based on root support and 
generalised root support, respectively, and determined using the constraints outlined. 
 
 

4 Grouping Domain 
 
Grouping perception involves mapping fuzzy time-regular grouping sets to time-slices in mu-
sical structure. It is proposed that time regularity and generalised time regularity are innate 
principles for constructing the sets and partition structure of grouping domain G, respectively. 
The constraints on time regularity are instantiation, relative textural density, proximity and se-
rial parallelism. The generalisation of time regularity over a hierarchy of n grouping sets de-
termines the partition structure of G. It is assumed that the constraints are synthesised in work-
ing memory for the construction of grouping sets and domains during real-time listening. 
 
4.1 Constraints on Time-Regular Grouping 
 
The initial processing of sound waves in the cochlea and auditory nerve, prior to absorption of 
information into the perceptual music faculty, involves transduction: complex harmonics are 
converted into pitch percepts based on support for a fundamental or virtual frequency; also, 
pitch events through time are converted into low-level time-regular units. The regular units are 
the beat or tactus levels, formed through bottom-up entrainment. Thus, the only sensory infor-
mation represented in the music faculty is pitch and low-level time-regular percepts (Rawbone, 
2021). For the G domain, low-level regular durations of time are the only basic incorrigible 
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percepts. Many perceptual studies and computational models support the idea that representa-
tion of beat or tactus is a fundamental and automatic pre-conceptual process (Rosenthal, 1992; 
Todd, 1996; London, 2004; Todd and Lee, 2015; Rajendran et al., 2018; Rajendran et al., 2020). 
This is backed up by principles of audio scene analysis and gestalt psychology (cf. Bregman, 
1990), and parallels the notion of automatic pre-conceptual processing in vision (Pylyshyn, 
2001; Fodor, 2008). According with the principle of compositionality, time-regular basic per-
cepts form the “building blocks” from which low-, mid- and high-level concepts are constructed 
(Cone, 1968; Benjamin, 1984; Lester, 1986; Rawbone, 2021). As argued above, while basic 
percepts are un-revisable, low-level concepts (harmony and grouping), mid-level concepts (e.g., 
harmonic rhythm) and high-level concepts (e.g., tonal and metrical structure) can be reinter-
preted during the emergent unfolding of events through time.  
 
Time-regular grouping encompasses the parameter “textural grouping” espoused in Rawbone 
(2017), which is the horizontal grouping of texture based on vertically corresponding event 
onsets in serial pitch streams. However, with textural grouping, only highly regular (highly 
stable UC) groups in a texture were theorised to inform metrical structure. Time regularity, by 
contrast, acts across slices of an individual pitch stream and combined textures, so that a group-
ing level set can be varied and graded at particular time points. Time regularity is informed by 
the four constraints and results in membership values that synthesise overall interaction. A for-
mal model of this interaction is not presented here but determined manually. (The integration 
of the constraints – instantiation, relative textural density, proximity, and serial parallelism (a–
d below) – for time-regular sets in G will be demonstrated manually in Ex. 3, Section 4.2.) The 
construction of regular level sets in G is an iterative process, which sometimes incorporates 
information from H. The constraints are combined in working memory in real-time, and so 
level sets generated must involve relatively short strings of G elements (time-regular units) 
owing to intrinsic limitations of this type of memory (Deutsch, 2013a). Accordingly, terms 
within level sets likely involve < 10 serial elements. Of particular note, constraints b and c 
necessarily require repeated iterations to generate level sets > 2 serial elements, because they 
utilise binary relations. 
 
The first constraint, instantiation (constraint a), acts on both monophonic and polyphonic tex-
tures, coining events on a single level that are, by degree, a multiple of (or equivalent to) units 
of the lowest level set (the beat or tactus level). Events in a single level are simply fixed as sets 
by virtue of being articulated at any time-point(s) (based on Lerdahl and Jackendoff, 1983; 
Temperley, 2001). A further type of instantiation event in G occurs through harmonic change, 
where negation and implication information is incorporated from domain H. This involves ne-
gation of prior harmony and re-establishment of novel harmony through implication, using Eq. 
(4) and Eq. (5), respectively (further discussed in Section 5). Ceteris paribus, there are instan-
tiation events in a level set of G if:  
 

Constraint a. (instantiation): there are events in G (or information from H) marking 
the onsets (/points of harmonic change) of level sets that are, by degree, approximate 
to or multiples of beat-level time-regular units. 

 
The next constraint, relative textural density (constraint b), applies to polyphonic textures, 
loosely construed, categorising level sets based on the relative mass of textural elements at 
several time-slices (expanding on Temperley, 2001, pp. 23–54). Textural density td is measured 
as the quantity of different tones in a particular time-slice ts. Similarly texturally dense time-
slices mark the onsets of sets at the same hierarchical level. Let ts1, ts2, ts3, …. tsn be a sequence 
of time-slices with textural densities td1, td2, td3, …. tdn, and let relative textural density of tds 
be the Cartesian product of the td relations: td1 R td2, td1 R td3, and td2 R td3, …, etc. (for all td 
∈ TD ⨉ TD). Ceteris paribus, the maximal td relation R (max–min) comprises tds that mark 
onsets of sets at a single level. This operation is iterated upon in real-time listening. 
 

Constraint b. (relative textural density): Maximal td relation R (marking onsets of 
sets at one level) =  

max	min	[𝑅(
∼
(𝑡𝑑), 𝑡𝑑*), 𝑅+

∼
(𝑡𝑑), 𝑡𝑑,), 𝑅-

∼
(𝑡𝑑*, 𝑡𝑑,), . . . ,	etc.]	

for	all	(𝑡𝑑), 𝑡𝑑*, 𝑡𝑑,, . . . , 𝑡𝑑.) ∈ 𝑇𝐷 × 𝑇𝐷	
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Proximity (constraint c) concerns pitch or time events in both monophonic and polyphonic mu-
sic. Proximity largely follows the rules and theories of Lerdahl & Jackendoff (1983, pp. 345–
346), Bregman (1990), Deutsch (1998, 2013a, 2013b), and Temperley (2001). Events of either 
pitch or time units that are most proximal in pitch or time form a collective series, the duration 
of which is whole or part of a level set. Let e1, e2, e3, …. en, be either pitch or time events e, and 
let proximity be the Cartesian product of e relations: e1 R e2, e1 R e3, and e2 R p3, …, etc. (E ⨉ 
E). Ceteris paribus, the relation with the maximal proximity (max–min) comprises events 
which form a collective series, and as stipulated, the duration of that series forms whole or part 
of a single level set. This operation is iterated upon in real-time listening.  
 

Constraint c. (proximity): Maximal proximity relation R (duration of whole or part of 
a single level set) =  
max	min	[𝑅(

∼
(𝑒), 𝑒*), 𝑅+

∼
(𝑒), 𝑒,), 𝑅-

∼
(𝑒*, 𝑒,), . . . ,	etc.]	for	(𝑒), 𝑒*, 𝑒,, . . . , 𝑒.) ∈ 𝐸 × 𝐸	

 
Serial parallelism (constraint d) concerns both monophonic and polyphonic music. Ceteris pa-
ribus, approximately parallel serial streams of either pitch or rhythm (rhythm defined as a ratio 
of time durations), that is, a, b, c, …, n, or a: b: c …. n, form corresponding sets, the lengths of 
which are the duration of level sets (based on Lerdahl and Jackendoff, 1983, p. 51). 
 

Constraint d. (serial parallelism): a, b, c, …, n ≈ a, b, c, … , n (pitch parallelism) 
a: b: c, …, n ≈ a: b: c : , … , n (rhythm parallelism) 

 
Proximity and parallelism of grouping are viewed as automatically-perceived properties (ge-
stalts) in generative theories (Lerdahl and Jackendoff, 1983; Bregman, 1990; Temperley, 2001). 
Since these constraints interact with each other in the G domain, and with other sets and rela-
tions in H, involving both bottom-up and top-down processing, such are not bone fide gestalt 
mechanisms. However, these are still relatively automatic perceptual processes and are none-
theless here considered fundamental constraints of the G domain. As noted, a formal model that 
integrates constraints a–d and delineates their interconnections with H is yet to be determined. 
Although, prima facie, it might be possible to construct G sets based on an overall relation 
between the four constraints, in many circumstances the interaction is more nuanced, and a 
feasible solution has not emerged. The process is not trivial and requires further theorising and 
empirical work. 
 
4.2 Formation of Sets and Partition Structure 
 
A fuzzy set in G is the fuzzy grouping of a duration between two time-points, involving fuzzy 
regularity of a hierarchical level determined by constraints a–d. (The relative values of grouping 
levels are as follows: maxima = 8; longa = 4; breve = 2; semibreve = 1; minim = .5; crotchet = 
.25; quaver= .125; semiquaver = .0625.) Fig. 11 shows the hierarchical basis of partition struc-
tures. The partition structure embodies generalised time regularity, where a main time-regular 
level L differentially supports time-regular events at lower levels, shown with arrows in Fig. 
11. A main level L is two or three times the time length of a sub-level set sl (L = 2 ⨉ sl OR 3 
⨉ sl) and four or six times the time length of a sub-sub-level set ssl (L = 4 ⨉ ssl OR 6 ⨉ ssl). 
In Fig. 11, the main level L, a longa level set [4], supports the double semibreve-level set [2] 
and, to a lesser degree, supports the semibreve-level set [1]. 
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Figure 11: A fuzzy main level set L and lower-level sets, sl and ssl, in G. 

 
Generalised time regularity involves differential UC between a main level set and lower-level 
sets in G. In Fig. 12, the main grouping level is likewise fixed at [4], which has maximally 
stable UC. The stable UC decreases incrementally with each set over the partition structure 
(from right to left), comprising a fuzzy G partition structure with intersecting sets at l1 (μ = .66) 
and l2 (μ = .33). Intersection involves the time-regularities of any two fuzzy sets aggregated at 
a single time-point (see also Fig. 3). The emboldened fuzzy intersect at l1 (μ = .66) involves 
aggregation of the longa set [4] with the breve set [2]. An example of such an ordered intersect 
is [4,2], where [4] is the most dominant level. The order depends on which level is most salient 
based on constraints a–d. Similarly, the emboldened intersection at l2 (μ = .33) involves aggre-
gating the longa set [4] and the semibreve fuzzy set [1], which results in an ordered fuzzy in-
tersectional set such as [4,1]; again, the order of the intersect depends on which level subset is 
most salient. Intersection follows the intuition that at any particular time-point it is possible to 
represent a fuzzy admixture of level sets in perception, and where the membership function of 
intersects is lower than main fuzzy categories (at l1 or l2). Ex. 6 in Section 5.5 illustrates fuzzy 
intersection of sets in G, assigning semibreve and minim sets to particular time-points (notated 
half-bar time-points). 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12: Fuzzy semibreve set [1], breve set [2], and  
longa set [4], and their intersectional sets at l1 at l2 in G. 

 
A hierarchy of level sets in G can now be demonstrated in the context of a musical texture. Ex. 
3, from Schubert’s “Trout” Quintet, D. 667, iv (1819), shows a fuzzy grouping hierarchy, de-
picted using the line nomenclature of Temperley (2001). The level sets are not perfectly crisp, 
although relatively uniform, which is characteristic of homophonic music. Quaver-level sets 
[.125] and lower are too sparse to form significant concepts in the conceptual hierarchy. The 
fuzzy crotchet-level sets [.25] are the lowest established level sets, both through instantiation 
(constraint a) and relative textural density (constraint b), on notated beats 1, 3 and 4 of most 
bars. Minim-level sets [.5] are individuated by instantiation (constraint a) and relative textural 
density (constraint b) at every notated bar and half-bar onsets. Semibreve-level sets [1] are de-
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termined through instantiation (constraint a) and the approximately serial pitch and rhythm par-
allelisms (constraint d) of all the motifs A–A′, B–B′ and C–C′ at notated bar onsets. However, 
the fuzzy breve level sets [2] and longa level sets [4] must be individuated using information 
from the H domain, involving resemblance relations RR with the G domain, examined in Section 
5. Grouping levels (and metrical levels, more abstractly) above the longa level are not articu-
lated in perception, although may be represented by indeterminate processes in cognition. 

 

 

 
Example 3: Fuzzy grouping hierarchy in  

Schubert’s “Trout” Quintet, D. 667, iv (1819). 
 
In summary, the sets and partition structure of G are constrained by time regularity and gener-
alised time regularity, based on the constraints and theorisation presented. This formalisation 
provides a principled approach for determining grouping structure. 
 

 
5 A Model of Fuzzy Relational Music Perception 
 
This section presents FRMP, which concerns two main relations: fuzzy resemblance relations 
RR (also termed compatibility or tolerance relations (Ross, 2010)), which involve analogical 
resemblance between H and G; and fuzzy logical implication relations, which represent contin-
uation through time (or overlap) in one domain (RM) or both domains (RI). While RR comprise 
the properties of weak-reflexivity, weak-symmetry and antitransitivity to determine conceptual 
hierarchy, implication relations, RM and RI, concern the intersectional overlap of sets through 
time, leveraging the min operator. Relations between H and G are necessary and sufficient for 
the individuation and assembly of concepts, from low-level concepts, such as event groups and 
chords, to high-level concepts, such as tonal and metrical structures. Fuzzy relations between 
domains are binary, involving the interaction or interconnectedness between elements of H and 
G sets, expressed as Cartesian product (Zadeh, 1971; Klir & Yuan, 1995). As noted above, it is 
axiomatic that concepts are individuated and assembled compositionally, from basic to com-
plex. Perception represents as many levels of abstraction as computationally possible, where 
higher-level sets (/concepts) are constructed from lower-level sets (/concepts), right down to 
basic percepts. Compositionality characterises the structure of domains and their relational in-
teraction, permitting the generation of coherent and comprehensible higher-level concepts. It is 
also axiomatic that relations between H and G are informational, not absolute: sets across the 
disparate domains are connected by analogical resemblance, which means they have a similar 
level of UC between their disparate domains. Also, the domains are scalable to enable coherent 
interaction, where G can be protracted or contracted to cohere with H and vice versa. Unartic-
ulated sets in-between articulated sets of domains can be omitted, providing the partition struc-
tures are otherwise preserved (since the partition structures of both domains are intrinsic and 
universal). 
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It is assumed that fuzzy relations at a single time-point are stimulated, or “fired”, in the music 
faculty on the occasion of sense data. Fuzzy time-point relations represent simultaneous events 
in H and G, where the external data triggers innately-encoded relational neural architecture. 
The Cartesian relational architecture of the biological neural network may alternatively be pre-
determined by innate constraints. In terms of this latter contingency, the network may be con-
sidered innate-in-effect, because neonatal learning must be rigidly constrained toward repre-
senting only information expressible as relations. Several time-point relations are aggregated 
through time to form RR, RM and RI, which are represented on a H ⨉ G product space. Concep-
tual structure is implicated through time as a truth-functional logical form using RM and RI. The 
overlap is calculated by aggregating the relations between two or more time-point sets or rela-
tions, in one or both domains, respectively. When a concept is introduced that does not form a 
fuzzy implication of a previous concept – that is, where there is negation – RR are required, 
permitting the construction of hierarchical structure through time. The max operator aggregates 
two or more time-point relations on a product space for the construction of RR. RR unite different 
level sets under a single hierarchy (in product space H ⨉ G), where more stable UC subset 
relations are at higher levels than less stable UC subset relations. The relational hierarchy results 
in tonality and metre being interdefined by RR. In order to isolate a concrete set within the tonal–
metrical hierarchy, the dimensionality of a subset relation is reduced to one of either domains, 
using projection (proj), explained in Section 5.1 (Eq. (9)). The use of relations in music can be 
highly complex, and there are circumstances where multiple relational hierarchies are set up 
concurrently, termed plural relational hierarchies (Section 5.5).  
 
Fig. 13 shows a schematic diagram of FRMP, which presumes iterative relation formation and 
concept construction. Implication relations in one domain (RM), H or G (Eq. (5)), are negated 
within the same domain, using Eq. (4). Implication in both domains simultaneously (RI) (H and 
G) is determined by Eq. (15), and negated by substitution of RI into Eq. (4). As noted, relations 
of resemblance (RR) (Eq. (8)), are formed between domains (H and G) through time. H and G 
subsets within RR and RI are concretised using projection (proj), as outlined above. All these 
notions rest on theorisation and equations set out in Sections 5.2–5.4. A further consideration 
is that perceptual relations and concepts may later be made crisp by higher-level systems in 
cognition, such as by consciousness, and memory and belief systems. Crisp concepts enable 
efficiency of representation and consolidation, achieved using various types of defuzzification 
methods, although high-level cognitive processing is a peripheral consideration in the discus-
sion here. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13: Schematic diagram of relation formation and concept  

individuation and assembly in FRMP.  
 
The following explication presents the mathematical components of FRMP, outlining the prop-
erties and characteristics of RR, RM and RI, and indicating how these are used in perception for 
concept construction. A further aim is to explore plural relational hierarchies to account for 
contrapuntal architectures. 
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5.1 Constructing Time-Point Relations and Resemblance Relations 
 
Fuzzy relations between H and G can be represented on a H ⨉ G Cartesian product space, 
involving ordered pairs of elements that are ascribed degrees of truth between 0 and 1. Relations 
at a single instance in time are represented in neural architecture, depicting interconnections 
between the domains at a time-slice, termed “time-slice relations”. However, on the occasion 
of sense data, relations are represented concretely by a point within the time-slice of the product 
space. Resemblance relations RR and implication relations in a single domain (RM) or both do-
mains (RI) are formed between two or more time-point relations. In this subsection, RR are given 
focus; in Section 5.4, RM and RI are examined. The first step in representing a single time-slice 
relation is to form cylindrical extensions on sets of both domains, which involves adding a new 
domain (/dimension) to a fuzzy set to create n + 1 domains, and which generates a mapping 
between them, where a set is extended over the product space (Zadeh, 1971; Klir & Yuan, 
1995). Eq. (6), based on Garriga–Berga (2005), shows the cylindrical extension (ce) of a har-
monic set X on the H ⨉ G product space. A cylindrical extension should be carried out, mutatis 
mutandis, on a set, say Y, in the G domain. Thus, a fuzzy extension of X (h ∈ H) and a fuzzy 
extension of Y (g ∈ G) are extensions over the same product space. 
 
																																																	ce	of	X	on	𝑯 × 𝑮 = {(ℎ, 𝑔), 𝜇𝑋(ℎ)}                                           (6) 

 
To take a concrete example, in the key of C Ionian, a harmony set h (h ∈ H) of chord I (C chord) 
can be extended over a product space, where the degree of membership for each C chord ele-
ment is copied to all (h, g) with the same h, as shown in Fig. 14 (a). Likewise, a grouping set g 
in G (g ∈ G) of the longa level can be extended over the same product space, where the degree 
of membership for each longa level set is copied to all (h, g) with the same g, shown in Fig. 14 
(b). 

 
 

  

(a)      (b) 

 
Figure 14: Cylindrical extensions of (a) harmony set  

(C chord) and (b) grouping set (longa level). 
 
The next step in finding a single time-slice relation is to calculate the intersection of these ex-
tensions. A time-slice relation is the intersection of extensions P and Q on the H ⨉ G product 
space, calculated using Eq. (7) which involves the min t-norm operator.  
 
																																																𝜇𝑃

∼
∩ 𝑄

∼
(ℎ, 𝑔) = min	(𝜇𝑃

∼
(ℎ, 𝑔), 𝜇𝑄

∼
(ℎ, 𝑔))                    (7) 

 
Fig. 15 illustrates the intersection between the C chord extension set (P) and the longa level 
extension set (Q), to produce a relation at a single time-slice (Eq. (7)). This time-slice relation 
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is invoked implicitly and automatically in perception in real-time when such concrete sets co-
incide at an instance in time. Note that the absolute length of H concepts is not a primary factor 
in determining these relations, providing the elements concerned are perceptually salient. The 
relation in Fig. 15 represents the innate neural architecture stimulated by the general concept 
categories involved. A concrete relation, fired on the occasion of sense data, would be a single 
point in the time-slice subset of the product space, the position of which would depend on the 
properties of the actual elements involved. The relative degree of membership between domains 
classifies a time-point relation. That is, low-level membership between the domains is a weaker 
relation, and means that an event is accordingly less salient for higher-level relational sets (/con-
cepts). Broadly, harmonic and grouping time-slice and time-point relations are precisely syn-
thesised using this method of dimensional intersection. (Musical examples that show the inter-
sectional method of synthesising the domains are considered in Section 5.3.) 

 
 

Figure 15: Time-slice relation showing intersection of a general harmony set 
(C chord) and a general grouping set (longa level) at a single time-slice. 

 
The next stage in concept individuation and assembly involves the chaining together of time-
slice relations to form an overall relation through time, generating RR, RM, or RI. (Section 5.4 
focuses on RM and RI.) To form an overall RR through time, r time-slice fuzzy relations are 
aggregated in a fuzzy union using the max operator, shown in Eq. (8). 
 
																																	𝜇𝑅

∼
∪ 𝑆

∼
∪, . . . , 𝑟	(ℎ, 𝑔) = 𝑚𝑎𝑥	(𝜇𝑅	

∼
(ℎ, 𝑔), 𝜇𝑆

∼
	(ℎ, 𝑔), . . . , 𝑟)                    (8) 

 
A diagrammatic union of time-slice relations C-major–longa R and G-major–breve S is shown 
in Fig. 16, forming a C major–longa—G major–breve RR, which represents the general neural 
architecture involved. An actual concrete RR would involve four points in the relational subset, 
for each concrete element of the four categories. The calculations for constructing a G-major–
breve, involving cylindrical extension and intersection (min) set out above, do not need to be 
repeated. While the properties of RR are nuanced and given attention in Section 5.2, it may 
already be apparent that the RR in Fig. 16 has the properties of reflexivity, symmetry and anti-
transitivity in the occupied subset of the product space. Also, it can be observed that the domains 
are interdefined by the RR, since RR determine tonal–metrical hierarchies. Fig. 16 depicts a to-
nal–metrical hierarchy where the subset relation [C, E, G] R [4] are the higher levels, and [G, 
B, D] R [1] are the lower levels. Indeed, the RR depicts a tonal–metrical hierarchy within which 
a C major chord set and a longa level set are the highest UC sets, which give rise to abstract 
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tonal–metrical structure. Section 5.3 outlines musical examples that generate conceptual hier-
archies using RR. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 16: C-chord–longa – G-chord–semibreve RR. 
 
While abstract relations are vital for perceptual connections, the concretisation of concepts is 
also necessary for perception to construct concept hierarchies. Concretisation might also be 
used by general cognitive systems, such as consciousness or memory and emotion systems, 
facilitating the consolidation of perceptual information (Fodor, 1983). Thus, it is useful to in-
corporate the broadly converse operation of cylindrical extension, projection, to turn a relation 
back into a single-dimension concrete fuzzy set, reducing the dimensionality from two domains 
to a single domain. The projection (proj) of a subset relation (h,g) of the H ⨉ G product space 
on H is shown in Eq. (9). This equation can be used, mutatis mutandis, for projections of a 
subset relation (h,g) on G. 

 

																																																proj	of	𝑯 × 𝑮	on	𝑯 = rℎ,max	
/
s𝜇0(ℎ, 𝑔)tu                                (9) 

 
An example of projection on H is shown diagrammatically in Fig. 17, where the G-chord–
semibreve relation is transformed back into a G-chord fuzzy set, shown with shadow. Note that 
projection maximises only those elements h by virtue of their interaction with G in the relational 
subset (h,g) of the product space. (A musical example of projection is given in Section 5.4.) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Projection (shadow) of G-chord–semibreve relation onto domain H. 
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5.2 Properties of Fuzzy Resemblance Relations 
 
In traditional fuzzy set theory, binary resemblance relations (RR) are conventionally examined 
on a single set, and have the following properties: reflexivity, which is an equality that holds 
between an element and itself; symmetry, a mirroring of element connections across a relation; 
and non-/anti-transitivity, a lack of connection between non-adjacent elements in a chain. It is 
useful to initially explore these properties on arbitrary crisp sets. It can be seen that a crisp RR 
is formed on the vertices and matrix diagrams in Fig. 18 owing to its reflexive, symmetrical and 
nontransitive properties. The RR is crisply reflexive because in the vertices diagram (Fig. 18 (a)) 
every element is connected to itself, and in the diagonal subset of the matrix, all corresponding 
elements form connections with values of 1 (Fig. 18 (b)). The RR is symmetrical since in the 
matrix and vertices diagrams there is a mirroring of elements in the relational structure. It is 
also nontransitive, because the three-element sequence, 1, 2 and 5 is an inequality. 
 
 
 

	 𝑹0 =

⎣
⎢
⎢
⎢
⎡
1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1⎦

⎥
⎥
⎥
⎤
	

(a) (b)  
 

 
Figure 18: (a) Crisp five-vertices diagram and  

(b) crisp matrix, both showing a RR (in Ross, 2010, p. 64). 
 
A crisp RR can be contrasted with a crisp equivalence relation, RE, since the latter is reflexive, 
symmetrical and transitive. An example of an RE is shown in a five-vertex graph (Fig. 19 (a)) 
and also on a relational matrix (Fig. 19 (b)). In this RE, elements 1, 2 and 5 form a chain that is 
a transitive equality. In general, RE are not useful for music perception, because they do not 
permit elements within a relation to be differentiated over the product space (explained further 
below). 

 

 

𝑹1 =

⎣
⎢
⎢
⎢
⎡
1 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1⎦

⎥
⎥
⎥
⎤
	

	
(a)  (b) 

 
 

 
Figure 19: (a) Crisp five-vertices fuzzy diagram and 

(b) crisp matrix showing an RE (in Ross, 2010, p. 65). 
 
Crisp matrices and vertices diagrams can easily be converted to fuzzy relations by adding mem-
bership values between 0 and 1 in the matrix and in the connecting arrows of the vertices graph. 
Although binary fuzzy RR are traditionally demonstrated on a single fuzzy set, i.e., R (X ⨉ X), 
they are here expressed on an H ⨉ G Cartesian product space to simulate analogical relations. 
Standard definitions of fuzzy reflexivity, symmetry and antitransitivity are shown in Eq. (10), 
Eq. (11) and Eq. (12), respectively (Klir & Yuan, 1995). 
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																																			𝜇0

∼
(ℎ, 𝑔) = 1	for	all	ℎ, 𝑔 ∈ 𝑯 × 𝑮 (reflexivity)                (10) 

 
																													𝜇0

∼
(ℎ, 𝑔) = 𝜇0

∼
(𝑔, ℎ)	for	all	ℎ, 𝑔 ∈ 𝑯 × 𝑮	(symmetry)                 (11) 

 
			𝜇0

∼
(𝑥, 𝑧) < max

2∈4
	min	[𝜇0

∼
(𝑥, 𝑦), 𝜇0

∼
(𝑦, 𝑧)]	for	all	𝑥, 𝑧 ∈ 𝑯 × 𝑮	(antitransitivity)             (12) 

 
In standard fuzzy set theory, a fuzzy binary relation R (H ⨉ G) is reflexive if it satisfies Eq. 
(10). If Eq. (10) does not hold for some members of H ⨉ G, then the relation is irreflexive; if 
Eq. (10) does not hold for all members of H ⨉ G, then the relation is antireflexive (Lin & Lee, 
1996). A fuzzy binary relation is symmetric if it satisfies Eq. (11); if this equality is not satisfied 
for some elements of the relation it is termed asymmetric; if the equality is not satisfied for the 
elements of the relational support then it is termed antisymmetric; if the equality is not satisfied 
for all h, g ∈ H ⨉ G then the relation is strictly antisymmetric. A fuzzy binary relation is anti-
transitive if it satisfies Eq. (12). If Eq. (12) does not hold for some members of H ⨉ G, then the 
relation is nontransitive; if Eq. (12) does not hold for all members of H ⨉ G, then the relation 
is transitive. The following matrices Ra-f in Fig. 20 demonstrate a number of these relational 
properties, some of which are used in defining RR. 
 

 

𝑅( �
1 0.8 0.3
0.3 1 0.6
0.4 0 1

� , 𝑅+ �
0.3 1 0.9
0 0.7 0.2
0.5 0 0.3

� , 𝑅- �
1 0.5 0.7
0.5 0.3 0.1
0.7 0.1 0

�,	

 

𝑅5 �
1 0 0.6
0 0.3 0.8
0.5 0.7 0.5

� , 𝑅6 �
1 0 0.6
0.1 0.3 0.8
0.5 0 0.5

� , 𝑅7 �
0.1 0.5 0.7
0 1 0.2
0 0.3 0.2

�.	

 
Figure 20: Fuzzy relational properties  

in matrices Ra-f (Lin & Lee, 1996, p. 48). 
 
It can be seen that Ra is reflexive, Rb is antireflexive, Rc is symmetric, Rd is antisymmetric, Re is 
strictly antisymmetric, and Rf is transitive. Such properties are variously combined in relations. 
For example, the fuzzy relation “x and y are very near” is reflexive, symmetric and antitransi-
tive; the fuzzy relation “x and y do not look alike” is antireflexive, symmetric and anti/non-
transitive; the fuzzy relation “x is greatly smaller than y” is antireflexive, strictly antisymmetric 
and transitive (Lin & Lee 1996, p. 48). We are presently concerned only with fuzzy resemblance 
relations RR, and of those, only RR that are reflexive, symmetrical and antitransitive. Only the 
first of the above relations, “x and y are very near” is a fuzzy resemblance relation, which can 
be otherwise stated as “x and y are approximately equal”. As noted, RR are distinct from RE, 
since the former are nontransitive or antitransitive, whereas the latter are transitive. In general, 
RE are not useful in music perception to connect H and G because antitransitivity is required to 
differentiate between analogically similar and non-similar elements on the product space. Tran-
sitivity connects analogically different (non-corresponding) elements, which if used in percep-
tion would mean there would be no way to distinguish analogically corresponding elements 
from non-corresponding elements across the product space. It should be observed, perhaps con-
fusingly, that while crisp equality and fuzzy equality (or fuzzy equivalence) are paradigm RE, 
approximately equal is not an RE because approximately equal can involve multiple incremental 
changes across a product space that can result in significant overall inequalities over that space. 
Rather, approximately equal is a fuzzy RR on account of its anti-/non-transitive property (Cock 
& Kerre, 2001; Cock & Kerre, 2003a, 2003b; Klawonn, 2003; Beg & Ashraf, 2010). 
 
The standard depiction of fuzzy reflexivity in Eq. (10) is too strong. A weaker form of reflex-
ivity, weak reflexivity (w-reflexivity), enables a broader support set in the H ⨉ G product space 
and more generalised membership functions, shown in Eq. (13) (based on Yeh, 1973; Gupta & 
Gupta, 1996; Chon, 2003). Eq. (13) shows that for w-reflexivity, the infimum (inf) of the tran-
sitive bound μ(t,t) between the analogically corresponding elements (x, x) between the domains 
of the H ⨉ G product space must be greater than the connections between x elements and other 
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elements y, i.e., μ(x,y), over the whole product space. Thus, w-reflexivity permits more gener-
alised membership for analogically reflexive relations of H ⨉ G. 

 
𝜇	is	w-reflexive		iff	𝜇(𝑥, 𝑥) ≥ 𝜖 > 0	and	inf	8∈9	𝜇(𝑡, 𝑡) ≥ 𝜇(𝑥, 𝑦)	

																																	for	all	𝑥, 𝑦 ∈ 𝑯 × 𝑮	such	that	𝑥 ≠ 𝑦 (w-reflexivity)                  (13) 
 
Similarly, the standard notion of symmetry in Eq. (11) is too strong, and a weaker form in Eq. 
(14) has been introduced, i.e., weak symmetry (w-symmetry) (Chon, 2017), applied here to the 
H ⨉ G product space. Eq. (14) shows that symmetrically positioned elements in the matrix can 
have a generalised connection, but non-symmetrically positioned elements have a zero connec-
tion. W-symmetry permits classification of a more generalised support set for fuzzy symmet-
rical relations.  
 

𝜇	is	w-symmetrical	iff	min	[𝜇(ℎ, 𝑔), 𝜇(𝑔, ℎ)] > 0	
																																or	𝜇(ℎ, 𝑔) = 𝜇(𝑔, ℎ) = 0	for	all	ℎ, 𝑔	in	𝑯 × 𝑮 (w-symmetry)                  (14) 
 
The standard fuzzy definition of antitransitivity is required for the present model, shown in Eq. 
(12), where a fuzzy binary relation R (H ⨉ G) is antitransitive if this inequality is satisfied for 
all elements. Antitransitivity, which holds between elements in any chain in H ⨉ G, is important 
for analogical RR between the domains, since as highlighted, only H and G elements that have 
a similar degree of UC stability should be connected to each other; non-similarly stable UC 
elements should not be related. An idealised example of a RR is shown across a complete H ⨉ 
G product space in Fig. 21, satisfying the defining properties of w-reflexivity, w-symmetricality 
and antitransitivity (in fact, it is reflexive, symmetrical and antitransitive). Such RR connect n 
fuzzy sets in H with n fuzzy sets in G, and, during activation in perception, would involve an 
aggregation of r binary relations between H and G at several time-points, a process more fully 
examined in the following subsection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Idealised fuzzy resemblance relation RR on the  
H ⨉ G product space, configured to C Ionian and the longa level. 

 
Such a RR over a complete H ⨉ G product space, as in Fig. 21, is exceptional, since more often 
fuzzy relations are formed as subsets of a possible product space. In Fig. 21, in the G hierarchy, 
the longa-, breve-, semibreve- and minim-level sets (i.e., [4], [2], [1], [0.5]), are scaled up (⨉ 
2) to match fifths steps in H (i.e., [C, E, G], [G, B, D], etc.). As discussed, scaling of a domain 
and omission of sets are sometimes required to construct coherent H ⨉ G relations, and are 
valid providing the partition structure – the internal scaling, set order and intersectional struc-
ture – is preserved.  
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5.3 Iterative Assembly of Resemblance Relations 
 
The iterative use of RR enables the construction of conceptual hierarchies. As discussed, rela-
tions at a single time-point are fired on the occasion of sense data (pitch and low-level time-
regularity percepts). Concept construction during real-time listening involves the aggregation 
of time-point sets or relations to form the through-time relations RR, RM and RI. Also, since 
concept construction is compositional, higher-level RR, RM and RI are formed from concepts 
individuated by lower-level RR, RM and RI. This section focuses on the iterative assembly of RR, 
while the following section examines RM and RI. 
 
The opening of Schubert’s “Trout” Quintet, D. 667, iv (1819), in Ex. 3 above, involves iterative 
aggregation of binary RR, using the process outlined in Section 5.2 to construct conceptual hi-
erarchies. Let us first examine low-level aggregation, looking at the upbeat before bar 1 and bar 
11. The domains of the matrix must be scaled to enable sets to correspond across the respective 
domains, a process carried out automatically in perception. In this case, the G domain is scaled-
up to correspond to the H domain. Thus, H sets are partitioned into intersects of 0.33 and 0.67, 
and G sets are scaled up (⨉ 2) to intersect with H sets at 0.17, 0.33, 0.50, 0.67, 0.83. A single 
concrete pitch is assumed to be interpreted abstractly as harmonic sets (as outlined in Section 
3). As such, the A tone on the upbeat before bar 1 supports the root of an A major chord set. 
The A tone as an A major chord set extension, and the crotchet set extension (upbeat before bar 
1) are shown in Fig. 22 (a)–(b). The intersection of these extensions is calculated using the min 
operator (Eq. (7)), which results in an A major–crotchet R time-point relation, shown in matrix 
form in Fig. 23 (a). The process of performing extensions and intersection to construct the time-
point relation D major–minim S on bar 11 is not shown here, involving the same procedure as 
that for constructing the first time-point relation, again using Eq. (7). The D major–minim S 
time-point relation is presented in matrix form in Fig. 23 (b). 
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(a) 
                              
 
 
 
 
 
 

(b) 
 

Figure 22: Cylindrical extensions of (a) A major and  
(b) crotchet, “Trout” Quintet (both on upbeat before bar 1). 

 
 

 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 

(b) 
 

Figure 23: Fuzzy time-point relations for (a) A major–crotchet R (upbeat  
before bar 1) and (b) D major–minim S (bar 11), “Trout” Quintet. 

 
To determine the (through-time) RR, it is then necessary to aggregate time-point relations R and 
S using the max operator (Eq. (8)). This results in a D major–minim—A major–crotchet RR, 
shown in Fig. 24 (a), representing both the abstract and concrete RR (in bold). As noted, the 
concrete points within the abstract subset relations are the fired time-point relations on the oc-
casion of sense data. The general categories of the matrices represent implicit knowledge of RR 
that is presumably innately fixed into the neural architecture of the music faculty. This permits 
recognition and categorisation of relations when concrete elements in the biological neural net-
work are stimulated by sensory data from the external world. Fig. 24 (b) presents the isolated 
concrete neurally fired RR, also satisfying the properties w-reflexivity, w-symmetry and anti-
transitivity. A tonal-metrical hierarchy is inferred from the RR, where the subset relations form 
each level of the hierarchy: the D major–minim S is the higher level, and the A major–crotchet 
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R is the lower level. It should be observed that RR between non-adjacent time-points are im-
portant also for concept-building, and fundamental in the determination of complex hierarchies. 
Furthermore, it is sometimes necessary that adjacent and non-adjacent sets are not connected 
by RR, since overabundant RR would mean hierarchical levels would be set up between a multi-
tude of time-points, which would be perceptually confounding. To this end, logical implication 
relations (RM and RI) enable continuation of fuzzy set structure, extending either the same har-
monic set in H or the same grouping level set in G through time, or extending both (Section 
5.4). 
 
 
 
 

 
 
 
 
 

(a)      (b)   
 

  
Figure 24: (a) Abstract and concrete through-time RR (R ∪ S)  

and (b) the isolated concrete neurally-fired RR, “Trout” Quintet (Ex. 3). 
 
The perception of low-level RR is required for individuating low-level voice-leading concepts, 
such as non-chord tones in serial pitch streams, including passing tones. An unaccented passing 
tone can be represented as an element within a RR in a single pitch stream context, where it is a 
lower-level subset of a low-level RR (e.g., Ex. 3, bar 34.5). However, in Ex. 1, the non-chord tone 
E in bar 11, termed an accented non-chord tone or appoggiatura in traditional music theory, is 
introduced at a position of the overall hierarchical structure where a more general RR is per-
ceived across the whole texture through time, connecting B major in H with the semibreve 
level in G. If the single E tone in bar 11 was to be interpreted abstractly as a harmonic entity it 
would not provide root support for the more general B major chord at this point. Accordingly, 
the E tone is set apart from the main relation and perceived separately as an accented non-
harmonic tone within a different relational structure. Broadly, accented passing tones and ap-
poggiaturas are cases where non-root-supporting tones are introduced that are contradictory to, 
or form paradoxes with, a wider relational hierarchy, creating conflict or ambiguity against the 
wider stable conceptual structure. As such, accented passing tones are more commonly found 
in texturally complex music, not single-line melodies, because they are set up to conflict with 
more general, higher-level relations (RR, RM, or RI) which provide a background for the smaller 
paradox (/contradiction), maintaining coherent overall conceptual structure. In more complex 
situations, where there is consistent conflict through sustained paradoxical relations through 
time, a novel relational hierarchy is introduced to permit wider comprehensibility (Section 5.5). 
 
In the iterative compositional construction of concepts, relations RR, RM and RI are employed at 
increasingly higher levels of harmonic–grouping hierarchies until the limit of the perceptual 
window is reached (to be determined empirically). The highest levels of the product space are 
the upper bounds of the tonal–metrical hierarchy. A high-level RR can be seen in Ex. 3, where 
the D major–longa time-point relation in bar 11 is aggregated with the A major–breve time-
point relation in bar 31 using the max operator (Eq. (8)). From this RR, when aggregated with 
other relations at lower levels, the tonal–metrical structure is extrapolated. Fig. 25 shows the 
concrete neurally-fired matrix for the D major–longa—A major–breve RR, which satisfies the 
properties w-reflexivity, w-symmetricality and antitransitivity. In Ex. 3, then, low-level con-
cepts (chords, groupings), mid-level concepts (e.g., chord progressions, harmonic rhythm, pass-
ing tones), and high-level concepts (e.g., tonality, metrical structure) are individuated using 
relations, and assembled according to the principle of compositionality. Low-level complex 
concepts (chords, groupings) are fixed by low-level relations, and these, in turn, form the build-
ing-blocks of mid-level and high-level concepts. 
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Figure 25: Concrete fuzzy RR, “Trout” Quintet, bb. 1–4. 
 
If comprehension of relations is a perceptual universal, RR, RM and RI should be used to fix 
concepts across music cultures. The use of RR can be observed in the opening of a traditional 
Sundanese gamelan piece, Lulunga (Ex. 4). This is an original transcription of a kecapi suling 
setting, performed by Megasari (2020). A kecapi is a bamboo flute and a suling a type of zither. 
The Sundanese pélog scale, shown in Fig. 26, is not exact in pitch owing to differences with 
equal temperament tuning, but is approximated using the Phrygian scale on B (Fig. 26). While 
the modal harmonic system is not fully consistent with the Sundanese harmonic system, it is 
broadly commensurate: both are constrained by root support, involving scales that incorporate 
intervals P1/P8, P5 and m3, and they use a similar subset of non-root-supporting intervals. In-
deed, most scales of the world are similar to the extent that they incorporate P1/P8, P5 and 
M3/m3 root-supporting intervals (Gill & Purves, 2009). It seems to be a point of fact that any 
variation between cultural scales and harmonic systems usually takes place with respect to non-
root-supporting interval classes. This tendency in itself is evidence that the harmonic forms of 
musical cultures are generally constrained by perception based on the criterion of root support. 
 
 
 
 

 
Figure 26: Pélog scale on B, with cent  

differences (+ or −) to pitches of equal temperament. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 4: Lulunga by Megasari for kecapi suling, original transcription, bb. 1–8. 
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At this stage, we do not need to rehearse the process of individuating time-point relations, 
shown in Eq. (6) and Eq. (7), we can simply posit a B minor–maxima time-point relation R at 
bar 11 (Fig. 27 (a)) and a D major–longa time-point relation S at bar 51 (Fig. 27 (b)). The 
concrete time-point relations (in bold) are embedded within the abstract time-slice category 
relations R and S. These are then aggregated using the max operator (Eq. (8)), resulting in an 
overall B minor–maxima—D major–longa RR. The general category RR is shown in Fig. 28 
(a), with the concrete RR embedded in bold. The concrete RR is shown isolated in Fig. 28 (b). 
The harmonic relationship between the harmonic sets, involving connections by thirds, is tra-
ditionally described as Riemannian or neo-Riemannian (Cohn, 1996), or a progression in “thirds 
space” (Lerdahl, 2001). A disadvantage of these approaches is that they are specialist; they do 
not generalise between any and all forms of harmonic movement – such as movement by sec-
onds or fifths, for instance. By contrast, H permits fluid and coherent integration of all types of 
movement between harmonic sets, and allows coherent integration with G.  
 
 
 
 
 

 
 
 
 

(a)  (b) 
  
 

Figure 27: (a) Abstract and concrete B minor–maxima time-point  
relation R and (b) abstract and concrete D major–longa  

time-point relation S (Lulunga, bb. 1–8). 
 
 

 
 

 
 
 
 
 
(a)                                     (b) 

 
Figure 28: (a) Abstract and concrete RR (union of R and S)  

and (b) isolated concrete RR (Lulunga, bb. 1–8). 
 
The opening section of Mozart’s Symphony No. 40, i, in Ex. 5 (bb. 1–8) is noteworthy in that 
it establishes a binary RR between three time-point subset relations, G minor–maxima, D major–
longa and A diminished 7th–breve. When aggregated using the max operator, these form a G 
minor–maxima—D major–longa—A diminished 7th–breve RR. The concrete RR (in bold) for 
this passage is shown embedded within the general fuzzy categories in the matrix in Fig. 29 (a). 
The concrete RR within the general categories is again presented in Fig. 29 (b), but in graph 
form. Note that this example highlights the weakened form of reflexivity, w-reflexivity. The w-
reflexivity, symmetry, and the individual concrete subset relations of the tonal–metrical hierar-
chy of the RR, are emphasised in a sagittal diagram (Fig. 30 (a)). The concrete RR is isolated in 
a fuzzy matrix (Fig. 30 (b)) that highlights all properties: w-reflexivity, symmetry and antitran-
sitivity. It can be seen from these representations that tonality and metrical structure are inter-
defined by the tonal–metrical hierarchy. The tonal–metrical hierarchy is represented across the 
whole RR, synthesising (generalised) root support and (generalised) time regularity. In this ex-
ample, the highest-level subset is the G minor–maxima relation, the next lower-level subset is 
the D major–longa relation, and the lowest-level subset is the A diminished 7th–breve relation. 
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These may be concretised by projection (proj) using Eq. (9), such as reducing the highest levels 
of tonality and metrical structure to the G minor set and maxima level set, respectively. A fur-
ther possible stage in the cognition of RR is that a complex relation may be defuzzified to enable 
crisp and efficient classification of sets and relations, for simplicity and efficiency of pro-
cessing. As discussed, crisp concepts reduce memory load, enabling more efficient top-down 
processing, and support coherent connections between other cognitive systems, such as con-
sciousness, and belief and memory systems. Defuzzification allows competing or contradictory 
fuzzy truth values or truth functions to be synthesised, since fuzzy logic invalidates the “laws 
of thought”, i.e., law of identity, law of the excluded middle and law of non-contradiction 
(Fodor, 1975, 1998, 2008), hindering some forms of cognitive processing. Standard methods 
of defuzzification include alpha cuts, mean–max membership, the centroid method and 
weighted average (Klir & Yuan, 1995). For instance, a defuzzification of Ex. 5 can be made 
using an alpha cut at a = .67, which simplifies the fuzzy RR to a crisp bivalent RR (Fig. 30 (c)). 
If required, crisp representation can be made at several alpha cuts, such as a = .33 and a = 0 
(not shown). Such concerns relating to defuzzification of relations require further investigation 
in future work. 

 

 
Example 5: Harmony sets (Roman numerals) and  

grouping sets (maxima and longa) in  
Symphony No. 40, i, W.A. Mozart, bb. 1–9 (1788). 
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 (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

 
Figure 29: (a) Fuzzy abstract and concrete G minor–maxima—D major–longa—A diminished  

7th–breve RR, on a matrix within general categories of each domain and  
(b) graph showing fuzzy concrete RR within the abstract categories of each domain. 

 
 

 

   
(a)                    (b)    (c)      

 
 
 

Figure 30: (a) concrete fuzzy RR in sagittal diagram, 
(b) concrete fuzzy RR in matrix diagram and 
(c) concrete crisp alpha cut (a = .67) of RR. 
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5.4 Fuzzy Implication Relations 
 
Fuzzy relational implication concerns the boundedness or overlap through time between sets of 
one domain (RM) or both domains (RI) in the H ⨉ G product space. These forms of logical 
implication enable elements, or relations between elements of the domains, to be perceptually 
connected through time for the construction of truth-functional strings in H, G, or both domains 
combined. This subsection focuses on the individuation and iterative assembly of RM and RI. 
 
Fuzzy implication relations (RM and RI) only obliquely correspond with notions of implication 
or prolongation espoused in music theory and computational musicology (as discussed in Sec-
tion 1.1) (cf. Schenker, 1935; Meyer, 1956; Lerdahl & Jackendoff, 1983; Narmour, 1990; Ler-
dahl, 2001; Hamanaka et al., 2006; Lerdahl & Krumhansl, 2007; Marsden, 2010; Marsden et 
al., 2018). Generative theory categorises harmony based on prolongational connections, even 
when harmonic connections may only be tenuous or vague between entities through time. In 
FRMP, by contrast, implication is defined strictly as overlap or continuation of conceptual 
structure within a domain or in both domains of the product space through time. Where there is 
no fuzzy overlap in a domain, such as when novel sets are introduced in H or G, this state of 
affairs is interpreted as fuzzy negation (/complement) of a prior term, using Eq. (4), and results 
in concept change. When negation occurs in both domains, new levels of conceptual hierarchy 
are introduced by leveraging RR; or, if the subset is irreconcilable within the relational hierar-
chy, a novel tonal–metrical hierarchy is introduced. 
 
To determine fuzzy implication in a single domain (RM), a standard t-norm operator is required; 
presently, the min operator is elected (Eq. (5)). RM is central to the classification of many con-
cepts, such as where a string of tones through time can implicate a unified chord by virtue of 
support for a single harmonic root. Classification of harmony through time requires implication 
between H elements based on root support. Mutatis mutandis, implication between G elements 
based on time regularity is necessary to perceive and classify repeated regular grouping sets 
through time. The use of RM in the H domain to individuate a chord concept can be seen in the 
opening passage of Schubert’s “Trout” Quintet (Ex. 3), which involves harmonic implication 
between beats 1, 3 and 4 of every bar. In bar 1, for instance, all pitch elements of the melody 
and accompaniment on beats 1, 3 and 4 strongly implicate the same root pitch D, thus collec-
tively individuating the D major chord set. The heatmaps in Fig. 31 (a)–(b) show schematic 
diagrams of single-domain relational implication RM for H (a) and G (b), with varying concep-
tual structure in the co-domain. Thus, for implication within a domain, harmonic or grouping 
sets must remain the same or similar at a particular hierarchical level during the unfolding of 
events. This is experienced in perception as the continuation of a chord set or the continuation 
of a grouping set. The fuzzy implication calculus is therefore an incisive means of measuring 
perceptual similarity in music (cf. Marsden 2012). A RM is also important for harmonic change, 
in connection with the converse of implication, negation, to define a novel instantiation event, 
which is a constraint on time regularity in domain G (constraint a). Negation enables further 
explication of the individuation of passing tones, which can be defined as harmonically non-
implicated (non-chord/negated) tones that move by step between two harmonically-implicated 
(chord) tones. The model of passing tones as non-implicated (/negated) tones is coherent with 
that which explains passing tones as a lower-level subset of RR, outlined above.  

 
 
 
 

 
(a)                                                                                       (b) 

 
Figure 31: Schematic heatmaps of RM in (a) H and (b) G. 

 
Relational implication in both domains simultaneously (RI) involves overlap of subsets in both 
domains in the product space through time, permitting continuation of both sets in the tonal–
metrical hierarchy. Eq. (15) expresses RI, which involves both domains, where the intersection 
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is the relational subset X and Y in the H ⨉ G product space through time (X → Y), leveraging 
the Mamdami min operator (Mamdami and Assilian, 1975). 

 

																																				𝑅: = 𝜇!
∼
(ℎ, 𝑔) → 𝜇'

∼
(ℎ, 𝑔) = min	(𝜇𝑋

∼
(ℎ, 𝑔), 𝜇𝑌

∼
(ℎ, 𝑔))					                  (15) 

 
Schubert’s “Trout” Quintet (Ex. 3) features RI between adjacent and non-adjacent time-point 
relations. For example, the semibreve–D major time point relation in bar 11 is implicated in a 
virtual repetition of that time-point relation in bar 21, duplicating the tonal–metrical hierarchy 
at the latter adjacent time-slice. As such, the semibreve–D major time-point relation in bar 11 
occupies a similar space in the product space as the time-point relation in bar 21, determined by 
Eq. (15). There are also low-level, non-adjacent RI in Ex. 3, such as RI between notated beats 2 
and 4 of every bar. For instance, the subset D major–crotchet in bar 12 is implicated in bar 14, 
duplicating the tonal–metrical hierarchy at this point. Fig. 32 shows a schematic heatmap for 
RI, where there is complete duplication (overlap) in the product space. Note that RI may likewise 
be negated, which can be calculated by substitution of the MC terms of RI into Eq. (4). 
 
 
 
 

 
 

Figure 32: Schematic heatmap showing RI. 
 
5.5 Plural Relational Hierarchies 
 
With the introduction of a novel set or relation, a novel relational hierarchy may be initiated to 
avoid paradox or contradiction with a prior relational hierarchy. This state of affairs is termed 
plural relational hierarchies. Plural relational hierarchies are constructed in various types of 
music, including the multiple independent melodic streams of polyphony or counterpoint, 
broadly conceived, or even within a single melodic stream of a song. Indeed, locked inside a 
melodic stream are myriad multiparametric concepts, from basic to complex, involving har-
mony, grouping, harmonic rhythm, etc., which may combine in various ways to form separate, 
or even contradictory, relational hierarchies. Each hierarchy is presented on a separate H ⨉ G 
product space and processed independently in the perceptual music faculty. However, the inte-
gration of hierarchies, which may take place in cognition, is opaque to formal analysis at present 
(cf. Chomsky, 2009). This section aims to sketch a tentative story on the broad picture of plural 
hierarchical representation.  
 
The song “Drain You” (1991) by the rock band Nirvana (Ex. 6), has been suggested to have 
plural harmonic–grouping (/tonal–metrical) hierarchical structures (Rawbone, 2021). The song 
contains six resemblance relations, RR 1–6, which are differentially coherent. The matrices for 
RR 1–6 are not illustrated here, but we can simply posit RR based on the hierarchical relational 
theory above, configuring the domains to the appropriate harmonic roots and grouping levels, 
scaled to permit coherent interaction on the product spaces. Let us firstly examine the fuzzy 
sets formed in G. Instantiation articulates crotchet-level sets [.25] at notated crotchets by all 
instruments, although in particular, in the melody stream (constraint a). Fuzzy minim level 
grouping sets [.5] are individuated by harmonic instantiation, through harmonic change at the 
notated bar and half-bar onsets (constraint a). Harmonic instantiation in G occurs with reference 
to information from H, where harmony is negated at the onset of every harmony (Eq. (4)) and 
novel harmony established through time by implication (RM) (Eq. (5)). Fuzzy semibreve-level 
grouping sets [1] at the notated bar are also individuated by instantiation through harmonic 
negation and subsequent implication (constraint a), by relative textural density in guitar and 
drums at the onset of notated bar time-points (constraint b) and through parallel rhythms corre-
sponding at time-points marked by the notated bar (constraint d). Ex. 6 is noteworthy in that it 
involves intersectional aggregation in G of semibreve-level and minim-level sets at notated 
half-bar time-points, shown in the partition structure in Fig. 33. That is, the fuzzy semibreve-
level grouping sets [1] intersect with fuzzy minim-level sets [.5] at notated bar and half-bar 
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time-points to form a combined intersect. This semibreve–minim intersectional set [1,.5] pre-
sumably has a membership value somewhere just under the l1 level, owing to the strong com-
ponent of the semibreve level subset, i.e., [1]. Significantly, no level sets higher than the semi-
breve level are articulated in G, and as such there are no RR at level sets higher than the semi-
breve level, as will be shown in the ensuing analysis. 
 

 

 
Example 6: RR1–6 in “Drain You”, Nirvana (1991). 

 
 
 
 
 
 
 
 
 

 
 

 
Figure 33: Intersection of semibreve and minim  

grouping sets at the notated half-bar time-points in “Drain You”. 
 
The relational interaction between domains generates conflicting plural hierarchies. The RR1–6 
in the first harmonic loop (bars 1–2) are identical to the second 2-bar loop (bars 3–4) in Ex. 6, 
but for brevity the relation notation is not repeated. As noted, RR1–6 are differentially coherent 
with each other, and the conflict between the relations means higher-level tonal–metrical struc-
ture is not intimated. The relations RR1 and RR2 are both A major–semibreve—C minor–minim 
RR, which can be concretised using projection (Eq. (9)) to A major/Ionian key at the semibreve 
level of tonal–metrical structure, on the onset of notated bars 1 and 3. Also, RR5 and RR6 are both 
F minor/major–semibreve—B minor–minim RR, which can be concretised to F Aeolian/har-
monic major at the semibreve level of metrical structure, on the onset of notated bars 2 and 4. 
However, RR3 is a B minor–minim—F minor/major–crotchet RR, suggesting B Aeolian/har-
monic minor at the minim level of metrical structure, on the notated half-bar time-points of bars 
2 and 4. Also, RR4 is a C minor–minim—A major–crotchet RR, resulting in C minor at the 
minim level of metrical structure, at the notated half-bar time-points of bars 1 and 3. Thus, RR3 
and RR4 cue a harmony (/tonality) and weak grouping (/metrical) hierarchy at notated minim 
time-points (shown in Fig. 33). These harmony–grouping relations and their suggested tonal–
metrical hierarchies conflict with each other at the notated bar level and higher. Accordingly, 
they do not permit perception of a coherent monistic higher-level tonal–metrical hierarchy. 



 

 44 

 
While plural relational hierarchies are a paradigm feature of Renaissance and Baroque counter-
point, they are also fundamental to many other types of Western and non-Western musics. For 
example, pluralistic hierarchies underpin Sundanese gamelan textures (e.g., Ex. 4) and Classi-
cal-period structures (e.g., Ex. 5), among many other styles of many cultures and historical 
periods throughout the world. Ex. 4 (Lulunga) involves a plurality of tonal–metrical hierarchies 
constructed from the three individual instrumental parts. However, the above analysis of Ex. 4 
reflects only the generalised overall hierarchy, largely informed by the accompanimental zither 
(suling). A deeper examination would reveal the plural hierarchies that exist within this gener-
alised hierarchy. The analysis of Ex. 5, the opening of Mozart’s Symphony No. 40, i (1788), 
concerns an overall tonal–metrical hierarchy likewise informed by the accompanimental instru-
mental parts; however, there is also a superimposed melodic tonal–metrical relational hierarchy 
presented by the violin I part, which is out of phase with the main orchestral accompaniment 
(Bernstein, 1976; Lerdahl and Jackendoff, 1983). Such phase differences have been character-
ised as “extended anacruses” (Rothstein 1989; McKee 2004), but actually concern a more fun-
damental perceptual capacity for individuating independent harmonic–grouping hierarchies. 
Plural relational hierarchies require teasing apart in perception, because they are an essential 
property of musical structure caused by the top-down agency of composers. A further case 
should be mentioned, which involves situations where a melody stream is accompanied by an 
additional stream or texture that merely makes explicit conceptual structure already presented 
in the main melodic stream. Such textures, found in popular music settings, hymn tune keyboard 
parts Western and non-Western folk music arrangements, for example, do not generate bone 
fide pluralistic relational hierarchies but converge into a single overall harmonic–grouping (to-
nal–metrical) hierarchy. 
 
The explanation of plural relational hierarchies provided counters the conviction that only one 
single metre or one overall tonality is held in perception (/cognition) during real-time listening 
(cf. Krumhansl, 1990; Conklin & Witten, 1995; Lerdahl, 2001; London, 2004; Hamanaka et 
al., 2006; Temperley, 2006; Pearce & Wiggins, 2012; Todd, 2015; Pearce, 2016; Marsden et 
al., 2018). Plural fuzzy relational hierarchies are common in many musical cultures, and so the 
capacity to generate them must be innate to perception. They may also be a method of admitting 
structural ambiguity into music, which seems to be a factor of artistic creativity (Bernstein, 
1976). 
 
 
6 Conclusions: Fuzzy Relational Music Perception in Context 
 
FRMP is a formal fuzzy mathematical model showing how low-level concepts (e.g., harmony 
and grouping), mid-level concepts (e.g., harmonic rhythm) and high-level concepts (e.g., tonal 
and metrical structure) are constructed combinatorially and compositionally in perception by 
relations between H and G. Domains H and G comprise distinct partition structures based on 
generalised root support and generalised time regularity, respectively, which are connected by 
fuzzy relations of resemblance (RR) and implication (RM and RI). These relations are decoded 
by perception for the individuation and assembly of conceptual structure. RR connect both do-
mains through time, comprising the properties w-reflexivity, w-symmetry and antitransitivity, 
and RM and RI connect one or both domains through time, respectively, involving the continu-
ation or overlap of concepts. Using these fuzzy relations, it has been theorised and demonstrated 
that perception generates coherent formulations of the following universal concepts and struc-
tural types: harmony, grouping, tonal structure, metrical structure, chord inversion, harmonic 
progression, added chord tones, modulation, chromaticism, counterpoint, accented and unac-
cented passing tones, harmonic change and harmonic rhythm, among others. 
 
Concepts determined by RR, RM and RI are arranged hierarchically through time, resulting in 
theoretically unbounded conceptual hierarchies. The music faculty, which is the perceptual 
module that individuates these relations, thus concerns a set-theoretical and truth-functional 
musical thought language (Chomsky, 1957, 1966; Fodor, 2008; Rawbone, 2021). FRMP 
amounts to an innate, graded and intrinsic form of musical semantics, mirroring formal seman-
tics rather than generative syntax, but incorporating fuzzy propositional logic rather than the 
predicate logics and higher-order logics of formal semantics (cf. Portner & Partee, 2002). The 
concepts and conceptual hierarchies of FRMP may be interpreted by more general modules at 
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higher levels of cognition but such processes are not understood at present. Cognitive pro-
cessing has not been given focus, although it may be assumed that modules such as conscious-
ness, belief systems and memory systems are essential for interpreting meaning in emergent 
perceptual edifices.  
 
FRMP offers a framework for determining MC relations and concept construction that is more 
compact, direct and parsimonious than generative theories, avoiding meta-conceptual notions 
such as time-span reduction and prolongational reduction, which can result in systemic frag-
mentation and incoherence. FRMP is also a marked alternative to connectionist, statistical–
associative and inductive frameworks, because empirically-guided processes often involve en-
trenched constellations of elements that do not account for the graded and combinatorially un-
bounded hierarchies of musical structure. The concepts and conceptual hierarchies of music 
have been shown to be generated as a result of the requirement to form fuzzy relational inter-
connections between domains H and G. Without a principled basis for interaction between the 
domains, comprehension of a musical thought language would be impossible. This view 
obliquely accords with Chomsky’s (1957) classic argument for generativity of language, which 
determines the limitations of associative–statistical methods in parsing unbounded combinato-
rial structures in natural languages (cf. Meyer, 1956; Gjerdingen, 1988; Conklin & Witten, 
1995; Temperley, 2006; Gjerdingen, 2007; Bharucha, 2009; Pearce & Wiggins, 2012; Hansen 
& Pearce, 2014; Dhariwal et al., 2020). If music perceptual comprehension is innate, which is 
suggested by FRMP, prior learning or exposure to lexicons or data sets may not be necessary 
for music processing. That is, learning, probability and expectation may not be essential condi-
tions of music perception, although statistical information seems to be incorporated, albeit en-
igmatically, into higher-level cognitive processing. 
 
The limitations of associative–statistical and connectionist models may be extrapolated from 
the above analysis of the opening of Mozart’s Symphony No. 40, i (1788) (Ex. 5). This passage 
has been described by schema theorists as a “Meyer” schema (Gjerdingen, 1988, 2007) and also 
as a “Gavotte” schema (Mirka, 2009), based on the statistical combination of its features. How-
ever, it has alternatively be interpreted as an MC arrangement of cognitively-generated univer-
sal features, termed a “butterfly” schema (Rawbone & Jan, 2020; see also Lerdahl, 2001). 
FRMP enables the MC “butterfly” explanation to be more finely formalised. The passage can 
be explained as a three-element RR (Fig. 29 and Fig. 30), representing the first three chord sets 
and their corresponding grouping sets (bars 3–8), with the addition of a RM between the initial 
and final tonic chord sets (bar 3 and bar 9). It seems perceptual representation or categorisation 
of such schemas does not require knowledge of the cultura galante (although knowledge of 
such cultural forms may be an actual property of higher-level cognition), or any prior statistical 
learning, but uses innate knowledge of fuzzy perceptual relations between H and G that is al-
ready fixed in neural architecture. Broadly, the majority of so-called schemas can be individu-
ated a priori using RR, RM, or RI, where relations are constructed across domains to connect root 
support in H with time regularity in G. This claim encompasses stock musical cadences, such 
as the perfect cadence, which may simply be reduced to a fuzzy essence comprising a RR be-
tween H and G, where a chord I follows a chord V in H at two time-points at relatively high 
levels of G. Note that this position is a distinct contrast to the anti-essentialist positions of 
Gjerdingen (2007) and Rawbone & Jan (2020). The present approach may be considered graded 
essentialist, since mental representations are limited by innate graded essences based on (gen-
eralised) root support and (generalised) time regularity in H and G, and the graded relational 
possibilities between them.  
 
A main limitation of FRMP as it currently stands is that it does not provide formal systems for 
constructing membership values given the partition structures and the domain constraints. Con-
ceiving an algorithm that synthesises the constraints for H and G using the partition structures 
and outputs suitable membership values is thus an important avenue for future research. Perhaps 
a further limitation of the model is that it offers only an ancillary formulation of chromaticism 
and modulation. It is foundational that root-detracting harmony must give rise to novel chords 
(involving a novel root) or novel H domains (involving a novel tonic), as illustrated in “I Get 
Around” by the Beach Boys (Ex. 2). Chromaticism and modulation thus do not have their own 
formal frameworks as such but emerge as properties that are by-products of an absence of root 
support. This is a markedly different approach to many voice-leading and geometry theories, 
where chromatic movement and tonal geometries are given concrete representation using sys-
tematic frameworks that treat these phenomena on their own terms (e.g., Cohn, 1996; 
Tymoczko, 2012). The present indirect framing of chromaticism and modulation may be pref-
erable, however, since it is contestable whether non-logical properties should form part of a 
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formal fuzzy-logical framework. Assuming the present set-theoretical and logical semantics, it 
would be incomprehensible to present chromatic and modulatory phenomena as basic concep-
tual infrastructure, because such have been shown to be intrinsically non-truth-functional. If the 
present approach is a true approximation of music perception, comprehension of emergent chro-
matic elements and modulatory structure must involve reframing within higher-level cognitive 
systems by top-down general systems, although the emergent phenomena would always be in-
tractable to perception. Ultimately, modulation and chromaticism may be considered open 
problems of this research program.  
 
Plural relational hierarchies are set up to avoid paradox or contradiction, to parse a term that is 
non-congruent in a prior hierarchy. The evidence for plural relational hierarchies challenges the 
view that there are necessarily monistic tonal and metrical hierarchies (cf. Lerdahl & Jackend-
off, 1983; Lerdahl, 2001; London, 2004; Deutsch 2013b; Tojo et al., 2018). Some form of syn-
thesis or rationalisation of plural relational hierarchies – presumably by higher-level systems 
in cognition – may be required to determine the interaction between them. This notion warrants 
further investigation, since at present, the connection (if any) between relational hierarchies is 
not understood, although may be presumed to inform meaning in unique artistic music. A goal 
of future research may be to map out and provide generalisations for the rich hierarchies locked 
inside serial pitch streams (e.g., melody), where parametric features such as harmony, grouping, 
tonality and metrical concepts form independent hierarchies within more general hierarchies. 
The role of more peripheral parametric structures may also be examined, such as contour, chro-
maticism, dissonance and voice-leading, etc. With respect to the latter properties, the work of 
Yilmaz & Teletar (2010a, 2010b) on counterpoint rules may provide useful formulations from 
which to proceed. 
 
Analogical resemblance relations (RR), which involve w-reflexivity, w-symmetry and antitran-
sitivity across binary fuzzy domains, may not only be of significance for music perception, but 
could have general application as a broad psychological principle for codifying analogy be-
tween disparate entities in perception, which is a hypothesis that requires further investigation. 
Future research may aim to corroborate FRMP empirically, through observational approaches 
in neuroscience, participant testing in psychology, and formal implementation in computer sci-
ence. Toward computational implementation, as discussed, it would be desirable to construct 
an algorithm that, given an input of musical parameters (e.g., MIDI), generates membership 
values based on the partition structures and domain constraints. It would also be advantageous 
to more clearly delineate the characteristics and functions of plural relational hierarchies, as 
suggested. The perception of plural hierarchies seems to be connected, in an oblique way, to 
mental complexity and creativity, and is an area where fuzzy models may offer considerably 
greater insight than the relatively static picture of music cognition espoused by generative and 
associative–statistical theories. 

  



 

 47 

7 References 
 
Alsinet, T., & Godo, L. (2000). A complete calculus for possibilistic logic programming with 
fuzzy propositional variables. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the con-
ference on uncertainty in artificial intelligence 2000 (pp. 1–10). Morgan Kaufmann. 
 
Armengol, E., Dellunde, P., & García–Cerdaña, À. (2015). A logical study of local and global 
graded similarities. Applied Artificial Intelligence, 29, 424–444. 
 
Azad, F., & Shukla, P. K. (2021). A review on the development of fuzzy classifiers with im-
proved interpretability and accuracy parameters. Journal of Informatics, Electrical and Elec-
tronics Engineering, 2(2), 1–9. 
 
Bach, E. (1964). An introduction to transformational grammars. Holt, Rinehart and Winston. 
 
Balzano, G. J. (1982). The pitch set as a level of description for studying musical pitch percep-
tion. In M. Clynes (Ed.), Music, mind, and brain (pp. 321–351). Plenum Press. 
 
Bernstein, L., (1976). The unanswered question: Six talks at Harvard. Harvard University 
Press. 
 
Beg, I., & Ashraf, S. (2010). On Poincaré paradox. The Journal of Fuzzy Mathematics, 18(3), 
631–640. 
 
Benjamin, W. E. (1984). A theory of musical meter. Music Perception, 1, 355–413. 

 
Bharucha, J. J. (2009). From frequency to pitch, and from pitch class to musical key: Shared 
principles of learning and perception. Connection Science, 21(2–3), 177–192. 
 
Bregman, A. S. (1990). Auditory scene analysis. MIT Press. 
 
Buchler, M. (2001). Relative saturation of intervals and set classes: A new approach to com-
plementation and pc set similarity. Journal of Music Theory, 45(2), 263–343. 
 
Cádiz, R. F. (2020). Creating music with fuzzy logic. Frontiers in Artificial Intelligence, 3(59), 
1–20. 
 
Chew, E. (2001). Modeling tonality: Applications to music cognition. In J. D. Moore & K. 
Stenning (Eds.), Proceedings of the twenty-third annual conference of the cognitive science 
society (pp. 206–212). Lawrence Erlbaum Associates. 
 
Chomsky, N. (1957). Syntactic structures. Mouton. 
 
Chomsky, N. (2009). (1966). Cartesian linguistics: A chapter in the history of rationalist 
thought. Cambridge University Press. 
 
Chomsky, N. 1995. The minimalist program. MIT Press. 
 
Chon, I. (2003). G-fuzzy equivalence relations generated by fuzzy relations. Korean Journal of 
Mathematics, 11(2), 169–175. 
 
Chon, I. (2017). Weak fuzzy equivalence relations and weak fuzzy congruences. Korean Jour-
nal of Mathematics, 25(4), 563–577. 
 
Civit, M., Civit–Masot, J., Cuadrado, F., & Escalona, M. (2022). A systematic review of artifi-
cial intelligence-based music generation: Scope, applications, and future trends. Expert Systems 
with Applications, 209, 1–16. 
 
Cock, D. M., Bodenhofer, U., & Kerre, E. E. (2000). Modelling linguistic expressions using 
fuzzy relations. In Proceedings of the 6th international conference on soft computing (pp. 353–
360). Fuzzy Logic Systems Institute. 
 



 

 48 

Cock, D. M., & Kerre, E. E. (2001). Approximate equality is no fuzzy equality. In S. Massanet, 
S. Montes, D. Ruiz-Aguilera, & M. Gonzáles-Hildago (Eds.), Proceedings of the 2nd interna-
tional conference in fuzzy logic and technology (pp. 369–371). Atlantis Press. 
 
Cock, D. M., & Kerre, E. E. (2003a). On (un)suitable fuzzy relations to model approximate 
equality. Fuzzy Sets and Systems, 133(2) 137–153. 
 
Cock, D. M., & Kerre, E. E. (2003b). Why fuzzy T-equivalence relations do not solve the Poin-
caré paradox, and related issues. Fuzzy Sets and Systems, 133(2), 181–192. 
 
Cohn, R. (1996). Maximally smooth cycles, hexatonic systems, and the analysis of late-roman-
tic triadic progressions. Music Analysis, 15(1), 9–40. 
 
Cohen, M. A., Grossberg, S., & Wise, L. (1995). A spectral model of pitch perception. The 
Journal of the Acoustical Society of America, 98, 862–879. 
 
Cone, E. T. (1968). Musical form and musical performance. Norton. 
 
Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal 
of New Music Research, 24(1) 51–73. 
 
Cooper, G., & Meyer, L. B. (1960). The rhythmic structure of music. University of Chicago 
Press. 
 
Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). JukeBox: A 
generative model of music. ArXiv. https://www.openai.com/blog/jukebox. 
 
Deliège, F., & Pedersen, T. B. (2007). Fuzzy song sets for music warehouses. In S. Dixon, D. 
Bainbridge, R. Typke (Eds.), Proceedings of the 8th international conference on music infor-
mation retrieval, ISMIR 2007 (pp. 21–26). International Society for Music Information Re-
trieval. 
 
Deutsch, D. (1998). The psychology of hearing. Sound & Video Contractor. 
https://www.svconline.com/news/psychology-hearing-365745. 
 
Deutsch, D. (2013a). Grouping mechanisms in music. In D. Deutsch (Ed.), The psychology of 
music (3rd ed.) (pp. 183–249). Academic Press.  
 
Deutsch, D. (2013b). The processing of pitch combinations. In D. Deutsch (Ed.), The psychol-
ogy of music (3rd ed.) (pp. 249–325). Academic Press. 
 
Elsea, P. (1995). Fuzzy logic and musical decisions. http://artsites.ucsc.edu/ems/Music/re-
search/FuzzyLogicTutor/FuzzyTut.html.  

Fitzgerald, J. A., Geiselbrechtinger, F., & Kechadi, T. (2004). Feature extraction of handwritten 
symbols using fuzzy logic. In G. I. McCall (Ed.), Proceedings of the 11th biennial conference 
of the Canadian society for computational studies of intelligence on advances in artificial in-
telligence (pp. 493–498). Springer-Verlag. 
 
Fodor, J. A. (1975). The language of thought. Harvard University Press. 
 
Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. MIT Press. 
 
Fodor, J. A. (1998). Concepts: Where cognitive science went wrong. Oxford University Press. 
 
Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford University Press. 
 
Forte, A. (1973). The structure of atonal music. Yale University Press. 
 
Garriga–Berga, C. (2005). A new approach to the synthesis of intelligible fuzzy models from 
input–output data [Unpublished doctoral thesis]. Universitat Ramon Llul. 
 

https://www.openai.com/blog/jukebox
https://www.svconline.com/news/psychology-hearing-365745
http://artsites.ucsc.edu/ems/Music/research/FuzzyLogicTutor/FuzzyTut.html
http://artsites.ucsc.edu/ems/Music/research/FuzzyLogicTutor/FuzzyTut.html


 

 49 

Gill, K. Z., & Purves, D. (2009). A biological rationale for musical scales. PloS ONE, 4(12), 
e8144. 
 
Gjerdingen, R. (1988). A classic turn of phrase: Music and the psychology of convention. Uni-
versity of Pennsylvania Press. 
 
Gjerdingen, R. (2007). Music in the galant style. Oxford University Press. 
 
Golik, P., Harb, B., Misra, A., Riley, M., Rudnick, A., & Weinstein, E. (2012). Mobile music 
modeling, analysis and recognition. In A. Sugiyama, H. Kiya, & H. Sakai (Eds.), IEEE inter-
national conference on acoustics, speech, and signal processing, ICASSP (pp. 2353–2356). 
IEEE. 
 
Gonzalez-Inostroza, M., de La Cuadra, P., & Cádiz, R. F. (2015). Fuzzy equalization of musical 
genres. In R. Dudas (Ed.), 41st International computer music conference: Looking back, looking 
forward – proceedings (pp. 134–137). International Computer Music Association. 
 
Griffiths, T. D., & Frackowiak, R. (1998). Analysis of temporal structure by the human brain. 
Nature Neuroscience, 1(5), 422–427. 
 
Gupta, C., Jain, A., & Joshi, N. (2018). Fuzzy logic in natural language processing: A closer 
view. Procedia Computer Science, 132, 1375–1384. 
 
Gupta, K. C., & Gupta, R. K. (1996). Fuzzy equivalence relation redefined. Fuzzy Sets and 
Systems, 79, 227–233. 
 
Hamanaka, M., Tirata, K., & Tojo, S. (2005). ATTA: Automatic time-span tree analyzer based 
on extended GTTM. In J. Reiss (Ed.), ISMIR 2005 international conference on music infor-
mation retrieval: Proceedings (pp. 358–365). Queen Mary University of London. 
 
Hamanaka, M., Tirata, K., & Tojo, S. (2006). Implementing “A generative theory of tonal mu-
sic”. Journal of New Music Research, 35, 249–277. 
 
Hamanaka, M., Tirata, K., & Tojo, S. (2007). FATTA: Full automatic time-span tree analyzer. 
In K. K. Jensen & S. Serafin (Eds.), Proceedings of the international computer music confer-
ence (pp. 153–156). International Computer Music Association. 
 
Hamanaka, M., & Tojo, S. (2009). Interactive GTTM analyzer. In K. Hirata, G. Tzanetakis, & 
K. Yoshii (Eds.), Proceedings of the 10th international society for music information retrieval 
conference (pp. 291–296). International Society for Music Information Retrieval. 
 
Hansen, N. C., & Pearce, M. (2014). Predictive uncertainty in auditory sequence processing. 
Frontiers in Psychology, 1, 1–17. 
 
Harnad, S. (1990). The symbol-grounding problem. Physica, 42, 335–346.  
 
Hasanzadeh, F., Annabestani, M., & Moghimi, S. (2019). Continuous emotion recognition dur-
ing music listening using EEG signals: A fuzzy parallel cascades model. ArXiv. 1910.10489.  
 
He, Y., & He, P. (2019). Design of artificial music intelligence system based on fuzzy percep-
tion learning. Journal of Physics, 1237, Article 042031. 
https://doi:10.1088/17426596/1237/4/042031.  
 
Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and Systems, 281, 
292–299. 
 
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press. 
 
Jan, S. (2007). The memetics of music: A neo-Darwinian view of musical structure and culture. 
Ashgate. 
 

https://doi:10.1088/17426596/1237/4/042031


 

 50 

Justus, T. C. & Bharucha, J. J. (2002). Music perception and cognition. In H. Pashler & S. 
Yantis (Ed.), Steven’s handbook of experimental psychology: Sensation and perception (3rd ed.) 
(pp. 453–492). John Wiley & Sons Inc. 
 
Kasinathan, V., Mustapha, A., Firdaus, M., Sau Tong, T., & Rahman N. A. A. (2019). Heart-
beats: Music recommendation system with fuzzy inference engine. Indonesian Journal of Elec-
trical Engineering and Computer Science, 16, 275–282. 
 
Katz, J., & Pesetsky, D. (2011). The identity thesis for language and music [Unpublished man-
uscript]. 
 
Klawonn, F. (2003). Should fuzzy equality and similarity satisfy transitivity? Comments on the 
paper by M. De Cock and E. Kerre. Fuzzy Sets and Systems, 133(2), 175–180. 
 
Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice 
Hall. 
 
Krumhansl, C. (1990). Cognitive foundations of musical pitch. Oxford University Press. 
 
Kuo, P. H., Li, T. H. S., Ho, Y. F., & Lin, C. J. (2015). Development of an automatic emotional 
music accompaniment system by fuzzy logic and adaptive partition evolutionary genetic algo-
rithm. IEEE Access, 3, 815–824. 
 
Kuusi, T. (2001). Set-class and chord: Examining connection between theoretical resemblance 
and perceived closeness [Unpublished PhD thesis]. Sibelius Academy. 
 
Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. 
University of Chicago Press. 
 
Leman, M. (1995). Music and schema theory. Springer. 
 
Lerdahl, F. (2001). Tonal pitch space. Oxford University Press. 
 
Lerdahl, F. (2013). Musical syntax and its relation to linguistic syntax. In M. A. Arbib (Ed.), 
Language, music, and the brain: A mysterious relationship (pp. 257–272). MIT Press. 
 
Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. MIT Press. 
 
Lerdahl. F., & Krumhansl, C. (2007). Modeling tonal tension. Music Perception, 24(4), 329–
366. 
 
Lester, J. (1986). The rhythms of tonal music. Southern Illinois University Press. 
 
Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy systems: A neuro-fuzzy synergism to intelligent 
systems. Prentice Hall. 
 
London, J. (2004). Hearing in time: Psychological aspects of musical meter. Oxford University 
Press. 
 
Longuet-Higgins, C. H. (1962a). Letter to a musical friend. Music Review, 23, 244–248. 
 
Longuet-Higgins, C. H. (1962b). Second letter to a musical friend. Music Review, 23, 271–280. 
 
Longuet-Higgins, C. H., & Steedman, M. J. (1971). On interpreting Bach. In B. Meltzer & D. 
Michie (Eds.), Machine Intelligence 6 (pp. 221–241). Edinburgh University Press. 
 
Lucas, P., Astudillo, E., & Pelàez, E. (2017). Human–machine musical composition in real-
time based on emotions through a fuzzy logic approach. Designing with Computational Intelli-
gence, 664, 143–159. 
 
Malcangi, M. (2008). Fuzzy logic-based audio pattern recognition. In T. E. Simos & G. Psi-
hoyios (Eds.), AIP conference proceedings 1060 (pp. 225–228). American Institute of Physics. 
 



 

 51 

Mamdami, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic 
controller. International Journal of Man–Machine Studies, 7(1), 1–13.  
 
Marsden, A. (2010). Schenkerian analysis by computer: A proof of concept. Journal of New 
Musical Research, 39(3), 269–289.  
 
Marsden, A. (2012). Integrating melodic similarity: A definitive phenomenon or the product of 
interpretation? Journal of New Music Research, 41(4), 323–335. 
 
Marsden, A., Tojo, S., & Hirata, K. (2018). No longer “somewhat arbitrary”: Calculating sali-
ence in GTTM-style reduction. In K. Page (Ed.), DLfM ’18: Proceedings of the 5th interna-
tional conference on digital libraries for musicology (pp. 26–33). Association for Computing 
Machinery. 
 
Massaro, D. W., & Cohen, M. M. (1993). The paradigm and the fuzzy logic model of perception 
are alive and well. Journal of Experimental Psychology: General, 122(1), 115–124. 
 
Mazzola, G. et al. (2002). The topos of music: Geometric logic of concepts, theory, and perfor-
mance. Birkhäuser Verlag. 
 
McKee, E. (2004). Extended anacruses in Mozart’s instrumental music. Theory and Practice, 
29, 1–37. 
 
Megasari. (2020). Lulunga: Kecapi Suling Instrumental: Rasa Duaan. [Instrumental music]. 
YouTube. https://music.youtube.com/watch?v=XuxzUxeJErw.  
 
Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press. 
 
Milne, A. J. (2013). A computational model of the cognition of tonality [Unpublished doctoral 
thesis]. The Open University. 
 
Mirka, D. (2009). Metric manipulations in Haydn and Mozart: Chamber music for strings, 
1787–1791. Oxford University Press. 
 
Monti, G., & Sandler, M. (2002). Automatic polyphonic piano note extraction using fuzzy logic 
in blackboard system. In U. Zölzer (Ed.), Proceedings of the fifth international conference on 
digital audio effects (pp. 39–44). John Wiley & Sons. 
 
Muns, L. (2014). Music, language, and the deceptive charms of recursive grammars [Confer-
ence session]. 2014 annual conference of the Royal Musical Association Music and Philosophy 
Study Group, King’s College, London. 
 
Muns, L. (2015). The inner work of music: Lerdahl and Jackendoff’s “Generative theory” [Un-
published PhD thesis]. University of Amsterdam. 
 
Narmour, E. (1977). Beyond Schenkerism: The need for alternatives in music analysis. Univer-
sity of Chicago Press. 
 
Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication–
realization model. University of Chicago Press. 
 
Norman-Haignere, S. V., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical path-
ways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88, 
1281–1296. 
 
Novák, V., & Perfilieva, I. (2004). On the semantics of perception-based fuzzy logic deduction. 
International Journal of Intelligent Systems, 19, 1007–1031. 
 
Nunes–Silva, M., & Haase, V. G. (2013). Amusias and modularity of music processing. Psy-
chology and Neuroscience, 6(1), 45–56. 
 
Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(3), 13335–13338. 
 

https://music.youtube.com/watch?v=XuxzUxeJErw


 

 52 

Parncutt, R. (1988). Revision of Terhardt’s psychoacoustic model of the root(s) of a musical 
chord. Music Perception, 6(1), 65–94. 
 
Parncutt, R. (1997). A model of the perceptual root(s) of a chord accounting for voicing and 
prevailing tonality. In M. Leman (Ed.), Music, gestalt, and computing: Studies in cognitive and 
systematic musicology (pp. 181–199). Springer-Verlag. 
 
Parncutt, R. (2011). The tonic as triad: Key profiles as pitch salience profiles of tonic triads. 
Music Perception, 28(4), 333–365. 
 
Patel, A. D. (2008). Music, language, and the brain. Oxford University Press. 
 
Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of 
temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776. 
 
Paz, I., Nebot, A., Romero, E., & Mugica, F. (2019). Charting perceptual spaces with fuzzy 
rules. 2019 IEEE international conference on fuzzy systems (pp. 1–6). IEEE. 
 
Pearce, M. (2016). The group-theoretic description of musical pitch systems [Unpublished 
manuscript]. 
 
Pearce, M., & Wiggins, G. A. (2012). Auditory expectation: The information dynamics of mu-
sic perception and cognition. Topics in Cognitive Science, 4, 625–652. 
 
Peel, J., & Slawson, W. (1984). Review of A generative theory of tonal music by Lerdahl, F., 
& Jackendoff, R. Journal of Music Theory, 28(2), 271–294.  
 
Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32. 
 
Peretz, I. (2009). Music, language and modularity framed in action. Psychologica Belgica, 
49(2–3), 157–175.  
 
Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 
688–691. 
 
Peretz, I., & Zatorre, R. (2005). Brain organization for music processing. Annual Review of 
Psychology, 56, 89–114. 
 
Piston, W. (1941). Harmony. W. W. Norton & Co. 
 
Portner, P. H., & Partee, B. (Eds.) (2002). Formal semantics: The essential readings. Blackwell. 
 
Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2, 411–
440. 
 
Pylyshyn, Z. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 
80(1–2), 127–158. 
 
Rajendran, V. G., Teki, S., & Schnupp, J. W. H. (2018). Temporal processes in audition: In-
sights from music. Neuroscience, 389, 4–18. 
 
Rajendran, V. G., Harper, N. S., & Schnupp, J. W. H. (2020). Auditory cortical representation 
of music favours the perceived beat. Royal Society Open Science, 7, 1–13. 
 
Rameau, J. P. (1971) (1722). Treatise on harmony. Dover Publications. 
 
Rawbone, T. (2017). The butterfly schema as a product of the tendency for congruence and 
hierarchical selection in the instrumental musical grammar of the classical period [Un-
published doctoral thesis]. University of Huddersfield.  
 
Rawbone, T. (2021). The conceptual structure of music: Congruence, modularity, and the lan-
guage of musical thought. In I. D. Khannanov & R. Ruditsa (Eds.), Proceedings of the world-
wide music conference 2021 (pp. 41–54). Springer. 



 

 53 

 
Rawbone, T., & Jan, S. (2020). The butterfly schema in the Classical style: A product of the 
tendency for congruence. Music Analysis, 39(1), 85–127. 
 
Riemann, H. (1905). Grundriß der Kompositionslehre (3rd ed.). Max Hesse. 
 
Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics 
and Music, 5(1), 35–53. 
 
Rosenthal, D. (1992). Emulation of human rhythm perception. Computer Music Journal, 16(1), 
64–76.  
 
Ross, T. J. (2010). Fuzzy logic with engineering applications (3rd ed.). John Wiley & Sons Ltd. 
 
Rothstein, W. (1989). Phrase rhythm in tonal music. Schirmer Books. 
 
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the 
structures and functions of human music. Proceedings of the National Academy of Sciences, 
112(29) 8987–8992. 
 
Schenker, H. (1979) (1935). Free composition (E. Oster, Tr.). Longman. 
 
Schneider, S. (2011). The language of thought: A new philosophical direction. MIT Press.  
 
Swain, J. (2002). Harmonic rhythm: Analysis and interpretation. Oxford University Press. 
 
Suiter, W. (2010). Toward algorithmic composition of expression in music using fuzzy logic. 
In K. Beilharz, A. Johnston, S. Ferguson, AY-C. Chen (Eds.), Proceedings of the 2010 confer-
ence on new interfaces for musical expression (pp. 319–322). NIME. 
 
Sun, J., Karray, F., Basir, O., & Kamel, M. (2002). Natural language understanding through 
fuzzy logic inference and its application to speech recognition. In D. B. Fogel (Ed.), Proceed-
ings of the 2002 IEEE international conference on fuzzy systems (pp. 1120–1125). IEEE. 
 
Tavalage, T. M., Sereno, M. I., Melcher, J. R., Ledden, P. J., Rosen, B. R., & Dale, A. M. 
(2004). Tonotopic organization revealed in human auditory cortex revealed by progressions of 
frequency sensitivity. Journal of Neuropsychology, 91, 1282–1296. 
 
Temperley, D. (2001). The cognition of basic musical structures. MIT Press. 
 
Temperley, D. (2006). Music and probability. MIT Press. 
 
Terhardt, E. (1979). Calculating virtual pitch. Hearing Research, 1, 155–182. 
 
Terhardt, E. (1982). Die psychoakustischen Grundlagen der musikalischen Akkordgrundtöne 
und deren algorithmischen Bestimmung. In C. Dahlhaus & M. Krause (Eds.), Tiefenstruktur 
der Musik (pp. 23–50). Technical University of Berlin. 
 
Todd, N. P. M. (1996). Towards a theory of the principal monaural pathway: Pitch, time and 
auditory grouping. In S. Ainsworth & S. Greenberg (Eds.), Proceedings of the workshop on the 
auditory basis of speech perception (pp. 216–221). ISCA. 
 
Todd, N. P. M., & Lee, C. S. (2015). The sensory motor theory of rhythm and beat induction 
20 years on: A new synthesis and future perspectives. Frontiers in Human Neuroscience, 9, 1–
25. 
 
Tojo, S., Marsden, A., & Hirata, K. (2018). On linear algebraic representation of time-span and 
prolongational reduction trees. In M. Aramaki, M. Davies, R. Kronland-Martinet, & S. Ystad 
(Eds.), Music technology with swing, CMMR 2017: Lecture notes in computer science (pp. 199–
212). Springer. 
 



 

 54 

Tokumaru, M., Yamashita, K., Muranaka, N., & Imanishi, S. (1998). Membership functions in 
automatic harmonization system. In B. Werner (Ed.), Proceedings of the 1998 28th IEEE inter-
national symposium on multiple-valued logic (pp. 350–355). IEEE. 
 
Tymoczko, D. (2012). The geometry of music: Harmony and counterpoint in the extended com-
mon practice. Oxford University Press. 
 
Tymoczko, D. (2022). Hierarchical set theory. Journal of Mathematics and Music, 17(2), 282–
290. 
 
Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences [Un-
published PhD dissertation]. Eindhoven University of Technology. 
 
Weyde, T., & Dalinghaus, K. (2001). Recognition of musical rhythm patterns based on a neuro-
fuzzy system. In C. H. Dagli et al. (Eds.), Smart engineering system design: Neural networks, 
fuzzy logic, evolutionary programming, data mining, and complex systems (pp. 679–684). 
ASME Press. 
 
Yahia, B. N., Bellamine, N., & Ghezala, H. B. (2012). Integrating fuzzy case-based reasoning 
and particle swarm optimization to support decision making. International Journal of Computer 
Science Issues, 9(3), 117–124.  
 
Yang, Y. H., Liu, C. C., & Chen, H. H. (2006). Music emotion classification: A fuzzy approach. 
In K. Nahrstedt et al. (Eds.), Proceedings of the 14th annual ACM international conference on 
multimedia (pp. 81–84). ACM. 
 
Yeh, R. T. (1973). Toward an algebraic theory of fuzzy relational systems. Proceedings of the 
international congress on cybernetics (pp. 205–223). IEEE. 
 
Yilmaz, A. E., & Telatar, Z. (2010a). Fuzzy logic based four-voice choral harmonisation in 
traditional style. Journal of Intelligent and Fuzzy Systems, 21, 289–301. 
 
Yilmaz, A. E., & Telatar, Z. (2010b). Note-against-note two-voice counterpoint by means of 
fuzzy logic. Knowledge Based Systems, 23, 256–266. 
 
Yost, W. A. (2009). Pitch perception. Attention, Perception, & Psychophysics, 71(8), 1701–
1715. 
 
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. 
 
Zadeh, L. A. (1971). Similarity relations and fuzzy ordering. Information Sciences, 3, 177–200. 
 
Zatorre, R. J., Belin, P., & Penhume, V. B. (2002). Structure and function of auditory cortex. 
Trends in Cognitive Sciences, 6(1), 37–46. 
 
Zhang, H., & Liu, D. (2006). Fuzzy modeling and fuzzy control. Birkhäuser. 


