
Athanasius Kircher’s Arca musarithmica (1650) as a
Computational System

Andrew A. Cashner ∗

March 28, 2024

Abstract

In Book Eight of Athanasius Kircher’s Musurgia universalis (Rome, 1650), this
Jesuit polymath describes a computing device for automated music composition,
called the Arca musarithmica. A new software implementation of Kircher’s device
in Haskell, a pure-functional programming language, demonstrates that the Arca
can be made into a completely automatic computational system. Moreover, the
project also demonstrates that the Arca in its original form already constituted a
computational system that almost completely automatic though designed to be
operated by a human user: as Kircher advertised, a completely “amusical” user
could generate music simply by using the device according to his rules. The device
itself served as a microcosm of Kircher’s goal in the Musurgia to encapsulate
and codify all musical knowledge, and demonstrate that music manifested the
underlying mathematical order of the Creation and its Creator. This article analyses
the concepts and methods of computation in Kircher’s original system, in dialogue
with the interpretation of his system in software. The Arca musarithmica, now
available on the web, makes it possible actually to hear how well Kircher was
able to reduce seventeenth-century music to algorithmic rules. The successes of
the system are inseparable from many paradoxical elements that raises broader
questions about how Kircher and his contemporaries understood the links between
composition and computation, mathematics and rhetoric, traditional harmonic
theory and emerging tonal practice, and concepts of “invention” and authorship.
Keywords: algorithmic composition, history of music theory, history of science,
Athanasius Kircher, music encoding

1 An “Ark” of Musical Invention in Infinite Permutations

In 1650 Athanasius Kircher published a detailed specification for a device called the “Arca musarith-
mica”, which appears to be an analogue computing device for automatic music composition (Kircher,
1650, II: 1–199). Within the ten books of the Musurgia universalis, this German-born Jesuit scholar
of ancient languages and mathematics (1602–1680) attempted to compile everything that was known
about music in a single Latin treatise (Findlen, 2004a; Fletcher, 2011; Godwin, 2009). The device he
describes in Book Eight is more than a demonstration of musical combinatorics: Kircher epitomises
his whole concept of music in one small box (Bohnert, 2010; Chierotti, 1994; Chierotti, 1992; Klotz,
1999; Murata, 1999; Pangrazi, 2009, 157–167; Wald, 2006, 134–143).

In the eighth book Kircher announces an “ars nova musarithmica recenter inventa”, “a new musical-
numerical method, recently discovered, by means of which even an untrained musician can achieve
perfect composition in a short time” (Kircher, 1650, II: 1). Kircher’s “new method” is a system for

∗Assistant professor of music, University of Rochester, andrew.cashner@rochester.edu. This work
was completed on the ancestral land of the Onöndowa’ga:’ (Seneca) Nation, one of the Six Nations of the
Haudenosaunee (Iroquois) Confederacy. Thanks are due to Christopher Brown, Devin Burke, Paulo Cereda,
Margaret Murata, David Temperley, and the anonymous reviewers of this journal for reading drafts and providing
helpful feedback. All translations are my own. This article is dedicated to Dr. Donald Knuth, from an admirer
and fellow organist, in gratitude for the way his work inspired me to learn computer programming and seek
connections between computer science and music.

Figure 1: Kircher’s Arca musarithmica, Musurgia universalis (1650) II, facing p. 185.

automatic music composition, embodied in the physical device whose name means something like
“box for musical calculation” (Fig. 1). By means of this device, he says, a “Tyro” (novice) or even an
“amusical person” can compose nearly every type of modern music from simple four-part homophony
to florid, imitative counterpoint, and even polychoral and recitative styles. Moreover, an amusicus
(someone without musical knowledge) can compose music expressive of any mood, and can even set
words to music from any world language – all simply by operating the device according to Kircher’s
detailed rules. Kircher advertises that, if used properly, the ark can produce music that a professional
musician would recognise as correct, appropriate to the text, and rich in variety. He includes a full
sample composition which he says was generated by an untrained musician using the ark and heard
with acclaim in elite Roman circles (Kircher, 1650, II: 166).

While skepticism might be warranted for some of Kircher’s claims, there is evidence that people
around the globe did build and operate the Arca musarithmica. Kircher’s Jesuit brothers circulated
copies of the Musurgia through their global networks as far as Manila and Mexico City, and evidence
suggests a version of the Arca was brought into the German lands (Findlen, 2004b; Irving, 2010,
48–50; Annibaldi, 1995). Three surviving physical implementations of the Arca musarithmica were
known until I discovered a fourth in Puebla, Mexico (Bohnert, 2010, 127–156; Boni, 2020). The
version in New Spain was probably made around 1690 by a university mathematics professor who
was part of a circle of Kircher aficionados in New Spain that included the poet Sor Juana Inés de la

2

Cruz (Cashner, 2022b; Osorio Romero, 1993; Trabulse, 1984; Beuchot Puente, 1995). I also found a
pamphlet describing the Arca from late eighteenth-century Madrid. While a physical implementation
of the Arca might have value purely as a curiosity, it is hard to believe that no one ever tried to use
them as intended. In fact, the version in Puebla includes only a partial selection of Kircher’s data
tables, which seem to have been selected for their practical value.

None of the surviving implementations are automatic machines, though: the Wolfenbüttel and
Cambridge versions are wooden boxes with paper slats inside holding Kircher’s tables of numbers
and notes, and the Puebla version consists of paper copies of the tables, originally looseleaf. Carlo
Mario Chierotti argues that despite Kircher’s use of terms like mechanicus and artificiosus to describe
the Arca, his invention is neither mechanical nor automatic; and in fact requires significant discretion
from a human operator to produce workable results (Chierotti, 1994, p. 390). Jim Bumgardner calls a
related device by Kircher “nothing more than a glorified recipe box” (Bumgardner, 2009, p. 3).

Did the Arca musarithmica really work as advertised? And should we consider it to be a form of
computer? What kind of computation did Kircher think was necessary to compose music, and how did
he connect concepts of calculation and composition? How did Kircher encode musical knowledge in
the Arca, and did his invention actually output music that would be judged coherent and intelligible?

To answer these questions, I created a working, completely automatic, software implementation of
Kircher’s Arca musarithmica (Cashner, 2021) in the pure-functional programming language Haskell
(Haskell.org Committee, 2024; Wikibooks contributors, 2018). Anyone may generate music using
the web application version (Cashner, 2023), which also includes the complete source code and
documentation written in a literate programming style (Knuth, 1992). Users can choose among
prepared input texts and select the style, metre and mood of the music; or they can even type in
their own text. Building the ark in software is more than just a programming project; it is an act
of interpretation balancing textual analysis with creative synthesis. The implementation serves two
main purposes: first, it tests the hypothesis that Kircher actually did describe an effective system for
musical composition in the form of an algorithm that only lacked the technological means to make it
fully automated. Second, it makes it possible to test the output of the ark to a degree Kircher could
not have imagined, and thereby to evaluate the kind of musical knowledge encoded in the ark and
how much musical knowledge is actually required to generate acceptable music with the system.

I argue that Kircher did establish a computational system for composition, including data structures
and algorithms, in which he formulated specifically musical conceptions of computation. The program
demonstrates that it is possible to conceive of the entire ark as a single mathematical function: it
takes one series of symbols, representing an input text and the choice of musical parameters, and
transforms those into another set of symbols that represents musical notation. Kircher explicitly aims
to provide a mathematically sound method of composition, and though his specifications fall short
of the standards of modern computer science, his algorithm works. The musical results generated
by this implementation do sound like mid-seventeenth-century Italianate music in a conservative,
church-oriented style. There are some mistakes in the data, and portions of the instructions are
underspecified or omitted, but in the end only a few parts of the system actually required the addition
of missing data or processes. In most of those cases Kircher was probably right to assume that a
human user would supply these gaps intuitively. These places where Kircher skips a step or assumes
knowledge that is not encoded in the ark actually reveal important aspects of his understanding of
music, because the whole device should be understood as an attempt to systematise a compositional
theory of music.

This is not the first attempt to implement the ark: in addition to the physical implementations already
mentioned, Agnes Cäcilie Bohnert modeled the ark in a Java program, and Bumgardner built a
related system in Perl. Bumgardner’s program implemented the musical portion of the Organum
mathematicum described by Kircher’s student Gaspar Schott, which was much simpler musically but
could also compute the date of Easter and solve other problems. Bohnert’s dissertation provides a
comprehensive treatment of Book Eight of the Musurgia, tracing its mathematical and philosophical
foundations (such as the Ars combinatoria of Ramon Llull) and comparing the description of the
Arca to the two physical implementations then known. I was unable to inspect Bohnert’s actual
software, but according to her description, the program implemented the two complete divisions of
the Arca (Syntagmata I and II) in a way that followed closely the manual method described by Kircher
(Bohnert, 2010, 123–126). Users would select musical permutations one at a time, adjust them, and
add them to the musical composition, and then hear the result. The program is not described as fully

3

https://github.com/andrewacashner/kircher
https://www.arca1650.info

Example 1: Automatic setting of Ave maris stella by the Arca musarithmica Haskell program, in
simple style (Arca MEI output rendered by Verovio)

automatic, however, and Bohnert says it can only create very short settings of a small number of texts.
The implementation presented here is to my knowledge the first realisation of the Arca musarithmica
to be fully automatic and to be capable of setting texts of any length and type. Exx. 1 and 2 show
simple and florid settings of the hymn Ave maris stella automatically generated by the ark.

I focus my examination of the ark on the ways that it embodies musical concepts of computation.
I consider the components of Kircher’s original device as a human-operated system, discuss what
was necessary to translate it for use by a digital automaton, and evaluate to what extent the software
realises Kircher’s computational system. I close with reflections on how Kircher’s system reflects
widespread views of the nature of music and of compositional craft, and how at the same time it
demonstrates a gap between theory and practice.

4

Example 2: Automatic setting of Ave maris stella in florid style (Arca MEI output rendered by
Verovio)

2 The Arca as a Human-Optimised Computational System

The original Arca should not be dismissed as a computing device just because it requires a human
operator, or because its design may seem simple. A computational system does not require an
electronic implementation; in fact, the fundamental modern concepts of computing, Turing machines
and Church’s lambda calculus, were defined before there existed any means of automating them
(Lewis, 1996, 13–24, 35–46, 57–60; Barendregt & Barendsen, 2000, 5–6). If the human operator’s
role is purely mechanical and does not require intelligent decisions, then the system should still
be considered automatic. With some exceptions to be discussed below, the user of the original
Arca, like the human operator of a Turing machine, simply follows prescribed rules to transform
symbols on paper. Kircher’s system is optimised for a human user, not because it depends on human

5

discretion, but because it enables a human to access the data easily and manipulate it by rule. What
may seem a simple structure of lookup tables is, first, more complex than it appears, and second,
still a valid computational system. This section will focus on the original specification for the ark
as a human-operated system, and will show how each component embodies a musical concept of
computation.

As Kircher’s illustration (Fig. 1) shows, the ark contains different kinds of musical information on
the outside, on the lid, and stored within. The user is supposed to choose a text to set to music, in
Latin by default, and prepare the text by dividing it into sections, phrases, words, and syllables. For
each segment, the user must select an appropriate style and mood for the setting. Next the operator
goes through the text phrase by phrase, and for each selects a pinax (rod or slat) from the appropriate
syntagma (division), based on the intended musical style and the poetic metre of the text. The ark
includes three syntagmata: the first is for simple, syllabic, homorhythmic counterpoint; while the
second is for florid, melismatic counterpoint with imitation and even fugato. The third syntagma
theoretically includes a huge range of styles and techniques but Kircher only published a small portion
of it, claiming that he reserved the rest in secret for the eyes of “princes and worthy friends” only
(Kircher, 1650, II: 184).

From the tables of numbers and rhythmic durations marked on the pinakes (plural of the borrowed
Greek pinax) the user extracts prearranged permutations of numbers and rhythmic values. The user
chooses a mood to suit the text from the table of tones (toni ecclesiastici or “church keys”) on the
lid, and then matches numbers to the pitch names and potential accidentals shown there. Finally, the
table on the front specifies how to inscribe these notes on paper within acceptable ranges for the four
voices. The ark’s output is a notated musical composition for four voices (cantus or soprano, alto,
tenor, and bass).

Kircher’s Arca includes most of the elements that make up any modern computational system (Ifrah,
2001). The marked-up lyrical text forms the input; the slats with musical permutations and the lookup
tables of pitches and accidentals function as part of a stored program; and the music paper serves
as both a temporary processing area (like working memory) and output medium. The data on the
ark’s pinax tables is encoded in a form that allows for compact storage and quick retrieval. The ark’s
tables should be understood as data structures whose design implies the algorithms needed to access
and manipulate them (Wirth, 1976, xii–xiii). Likewise, the tables map inputs to outputs according to
a rule and are therefore one way of expressing functions. The human operator must do the actual
processing of course, but the user must do this according to Kircher’s prescriptions, equivalent to the
program. And except in a few areas, Kircher does provide a complete list of procedures, specifying
an algorithm that may not be quite precise enough to meet a rigorous mathematical definition but is
nevertheless functional (Knuth, 1997, 1–7). Since the software implementation of Kircher’s algorithm
does satisfy modern theoretical requirements, I will note where I found it necessary to complete the
specification.

2.1 Kircher’s Data Structures: Syntagmata, Pinakes, Musarithms

Examining Kircher’s data structures more closely will show the ways in which he has encoded
musical data in order to make it possible for a human operator to manipulate musical materials in a
mechanical way. Inside the actual arca or box there are three groups (the syntagmata) of long slats
(the pinakes). The choice of syntagma is determined by the style of text-setting: respectively, simple
homophony, florid counterpoint, or mixed. (This software fully implements only the completely
specified Syntagma I and II, and it is not clear if Syntagma III could be fully automated based only on
Kircher’s specification.) Within each syntagma the choice of pinax is a function of the poetic metre
of the input text.

The design of the pinakes recalls Napier’s bones and similar calculating devices (Ifrah, 2001). The
user removes the needed pinakes from the box and arranges them on a work surface to extract data
from them. Fig. 2 shows the slat used to set the hymn Ave maris stella in simple style, Syntagma I,
Pinax 4. Fig. 3 shows the one used to set the same hymn in florid style: Syntagma II, Pinax 2. Each
pinax has two components: lists of integers one through eight and lists of note symbols. Kircher
uses the term musarithmos (musical numbers) primarily to refer to the tables of numbers; for greater
precision I call the pitch numbers vperms (voice permutations) and the durations rperms (rhythm
permutations).

6

Figure 2: Arca musarithmica, Syntagma I, Pinax 4, in Musurgia universalis (1650), Book Two, fol.
83

7

Figure 3: Arca musarithmica, Syntagma II, Pinax 2, in Musurgia universalis (1650), Book Two, fol.
106

8

2.2 Encoding Pitches and Rhythms

The vperms and rperms are arranged differently in each syntagma. In Syntagma I, all the voices use
the same rhythm, so Kircher writes separate tables of vperms and rperms: the user pairs a four-voice
vperm from the top of the pinax with an rperm on the bottom that is a single list of durations. Since
the music in this syntagma is syllabic, the columns correspond to successive syllables in the input
text. In Syntagma II, by contrast, Kircher enables complex counterpoint by pairing four-voice vperms
with four-voice rperms, so that each voice has its own rhythm. Here the music is melismatic, and
there can be a different number of notes in each voice. Since Kircher never provides precise rules for
how to underlay the lyrical text in Syntagma II, it would be more accurate to think of these vperm
rows as lists of notes rather than as table columns, which is how they are implemented in the software.
In most pinakes of both syntagmata, the user is supposed to choose from a different column based on
the order of poetic lines in the input text. Kircher calls these strophae, which despite the cognate
means lines not stanzas.

Kircher does not encode pitch directly in the vperm tables. Instead, the integers are actually lookup
keys for the mensa tonographica or tone table, where letters A through G plus sharp or flat symbols
represent the pitch classes. In modern terms, the numerals represent scale degrees relative to the
modal final of a particular tone, so that in tone I, with its final on D, 5̂ is A. Kircher uses both 1
and 8 to refer to the final, often to express stepwise motion between 7̂ and 8̂. Each pinax includes
specifications of which tones are acceptable, some in a box to the side, others at the top of each
column, and some in the introductory text. At this stage, the numbers only correspond to note names
and also to potential accidentals; the octave and duration are still unspecified.

To encode rhythms, Kircher uses note symbols for the different rhythmic values: breve (), semibreve
(¯), minim (˘ “), semiminim (ˇ “), and fusa (ˇ “(), along with the corresponding rest symbols. The rperms
in Syntagma I are divided into three sections by metre: for duple metre, “triple major”, and “triple
minor”. In his notated realisations Kircher uses the mensuration signR for duple metre, which would
normally indicate a metrical pattern in groups of two breves, each divided into two semibreves – i.e.,
imperfect tempus, alla breve. In practice, though, about half of his rhythm permutations suggestS ,
with groups of two minims. The system does not distinguish between these forms of duple metre,
probably out of Kircher’s stated desire to maximise the variety of the ark’s output. This would not be
a problem for someone choosing the permutations intelligently, but since Kircher does not provide a
way to distinguish automatically, this implementation of the ark can produce absurd results in duple
metre when the implied subdivision shifts abruptly.

In Syntagma I, based on the prior choice of musical metre, the user is supposed to choose one of the
three metre categories, and then select one of the rperms from the same column as the chosen vperm.
In many pinakes of Syntagma I, though, there is actually only one set of rperms, which is repeated at
the bottom of each column. The triple-metre rperms are divided into two sections, one for a ternary
proportion ofR and the other for a proportion ofS . Kircher writes these interchangeably asR2

3 andR3 for “Tripla maior”, and asS2
3 andS3 for “Tripla minor”. The tactus or metrical unit inR3 falls on

groups of three imperfect semibreves, in a 3 : 2 proportion to the groups of two semibreves inR . InS3 there are groups of three minims, in the same proportion to the binary groups of minims inS . In
Syntagma II all the permutations are in duple metre and the vperms and rperms are paired.

With this separate encoding of pitch and rhythm, Kircher discovered a compact way of representing
fairly complex polyphonic music. As Chierotti notes, musicians already used numbers to represent
pitches in figured-bass notation, where the numbers stood for intervals above the bass note (Chierotti,
1994). Kircher’s rhythm notation also drew on existing practices like the German keyboard tablature
of contemporary organists such as Matthias Weckmann, who wrote down letter names in one row
with matching duration symbols above (Weckmann, 1980). The Arca user does not need to decode
either numbers or duration symbols mentally, because the numbers are lookup keys for the tone table,
and the durations need only to be copied directly onto the music paper. For the rhythm, Kircher might
also have used integers keyed to a lookup table (as in the software implementation), but his use of
duration symbols is more logical and efficient for a human operator.

2.3 Optimised for Automatic Human Operation

For a programmer, Kircher’s use of graphical symbols for rhythm seems a hindrance because a
digital computer cannnot understand them until they are converted into numbers. For this reason, the

9

software implementation uses enumeration labels for durations: it is more convenient for the human
programmer to write Sb for a semibreve while the compiler converts this to an integer internally,
but Kircher designed his system for an amusical human operator, for whom no thought at all would
be required to simply copy the symbols from the rperm table onto the music paper. In that way
Kircher’s original graphical encoding is actually more automatic and requires less computation than
the software implementation.

Kircher’s use of mensural notation further illustrates his human-oriented design. For a computer,
symbols must be unambiguous, so the contextual system of mensural notation in ternary metre
poses an obstacle. InS3 (rendered in modern notation as 2

3), for example, the mensural figure ¯ ¯ is
equivalent to the modern ¯ ‰ ¯ ‰ , while the mensural figure ¯ ¯ ˘ “ is equivalent to the modern ¯ ‰ ¯ ˘ “. In the
software implementation, it was simpler just to convert the ternary rperms to their modern equivalent,
which in most cases simply required adding a dot to the final duration. In the original system, by
contrast, no conversion or calculation was required at all; an “amusical” user could simply copy the
durations and let the performers figure out the contextual notation.

For a human user of the physical Arca, once the input parameters are known, all of these data for
composing the music can be accessed quite readily by a simple scan of the box and its contents. The
human user must know the poetic metre of the text and parse the text into phrases and syllables, and
then must choose the intended style, mood, and musical metre. The style tells the user which area of
the box to search (which syntagma), and the user then matches the text metre to the label at the top
of the appropriate pinax. The user removes the needed pinakes, lays them out in order, and moves
them up and down to choose the needed vperm and rperm columns; it only remains to read across the
tables and copy down the symbols. In most cases the in-order position of the poetic line determines
the choice of column within a pinax. Then for vperms, the selection of a row is a free choice. For
rperms in Syntagma I, the choice of musical metre determines which subtable of rperms to select and
the particular rperm selection is a free choice. In Syntagma II, all the rperms are in duple metre and
they are already matched to the vperms, so only one choice is needed. Kircher’s design of the pinax
limits its useability, though, because the user must select different rows from a single pinax. The rods
would be easier to use if they were built like slide rules with moveable columns.

Once the numbers are copied or noted mentally, the user can turn to the tone table, where the choice
of mood determines the tone, and the tone and the vperm integer are the keys for looking up pitch
names in the table. The tone table is the least optimised part of the system for any operator (aside
from the musical problems with Kircher’s whole concept of toni, to be discussed below). Although
the user must look up information in the table based on the two inputs of tone number and pitch
number, the table is keyed by tone number and pitch name. Instead of a simple array lookup, then,
one has to scan each column to find the pitch number and then look over to the axis to obtain the
pitch letter. Because the table also includes potential ficta accidentals, it would make more sense,
even with a human user in mind, to put the pitch numbers on the axis and store the pitch letters with
their accidentals in the table cells. In terms of computational complexity, Kircher’s table requires
𝑂 (𝑛) time, versus 𝑂 (1) for a table indexed by tone and pitch numbers (Knuth, 1997, 107–111).

To make matters worse, Kircher actually provides two conflicting tone tables, and in contrast to the
one shown in the engraving (Fig. 1), the one given in the text is actually unusable for computation
(Kircher, 1650, II: facing 185, II: 51). The other table groups the tones out of numerical order to
demonstrate patterns; it includes two conflicting entries for tone 8; and, among other differences, this
table lists a tone 4 with an E final, \3̂, and Z5̂; while in the engraved table, tone 4 has an A final with\3̂ only (Bohnert, 2010, 65–77). The software implementation, therefore, is based on the engraved
table. Notably, the copyist of the Arca in Puebla made the same choice and ignored the erroneous
table (Cashner, 2022b, p. 54).

Kircher never actually specifies a rule for choosing a particular vperm or rperm within a column. In
some places he implies that a random choice would increase variety, while elsewhere he suggests that
the user discriminate based on musical considerations. Kircher seems ambivalent about creating a
fully automated system, perhaps motivated by theological anxieties about superseding human free
will and intelligence, or about chance operations. At the same time, there are numerous ways a human
user can simply “pick any row” and achieve semi-random results. The digital automaton can only
simulate a free choice by using a pseudo-random number generator, though in this implementation it
would still be possible for a superstitious user to supply their own list of permutation choices.

10

Regardless of the inconsistencies, Kircher’s encoding system should be recognised as a symbolic
representation of music intended to allow a mathematical approach. Kircher compares his system
to the working-out of an algebra problem, in which simply by applying a series of rule-based
transformations to a set of symbols, one can achieve previously unexpected results (Kircher, 1650,
II: 2). Kircher’s effort moved in the same direction as contemporary mathematicians Fermat, who
shared Kircher’s interest in combinatorics, and Leibniz, with whom Kircher corresponded: his
encoding system lifted music into a more abstract realm in which the sonic materials could be
manipulated symbolically (Chierotti, 1994, p. 389; Ifrah, 2001, 70, 77–80, 88–92). Like Kircher,
those mathematicians did not fully succeed in finding unambiguous symbolic representations or state
their proofs according to the same laws of rigour practiced today. Even today the closest we come to
a symbolic language for manipulating music abstractly may be MEI-XML; but that system still lacks
full support for notating music of Kircher’s era, and is designed more for machine readability than
for human convenience (Music Encoding Initiative, 2022). Tables might not seem like sophisticated
computing devices today but in Kircher’s day they were cutting-edge technology in mathematics and
engineering. Kircher’s student Gaspar Schott published a version of the Arca as part of a larger work
that attempted to solve nearly every type of problem with tables (Schott, 1661).

3 Implementing the Ark for a Digital Automaton

In contrast with Kircher’s human-oriented design, the software implementation for a digital automaton
requires a complete, fully precise algorithm reducible to binary numbers. By number alone, the
machine must build the ark, read the input, access the ark data, transform it, and then write it in
the output format. The Haskell language, with its pure-functional orientation, guaranteed that the
implementation would be a single function (calling other nested functions), while its strict typing
made it possible to treat the required data structures as distinct data types. The program uses the
following modules:

Aedifico (“I build”) This module defines the software versions of Kircher’s structures and the
basic methods for accessing them.

Arca musarithmica This module stores the original data of Kircher’s ark in nested vectors and
lists of integer values, enumeration values corresponding to the rhythmic durations, and lists
of mode scales and other information.

Lectio (“I read”) This module creates the system for reading the input texts, which must be written
in a custom XML vocabulary. The functions in this module extract the parameters like text
metre, music metre, and mode; and parse the text into sections, sentences, phrases, words,
and syllables.

Fortuna (“Chance”) This module generates the pseudo-random numbers used to select vperms and
rperms.

Cogito (“I think”) This module is where the actual “musarithmetic” occurs, where vperm numbers
are converted into pitches with accidentals, rperms are converted into durations, and octaves
are set and adjusted according to Kircher’s rules. The module stores all this data in internal
data structures that encode music sections, phrases, and pitches (with pitch class, octave,
accidental, duration, and syllables).
Cogito.Musarithmetic This submodule includes the functions that calculate musical

pitches (such as adding pitches to shift octaves or subtracting to find and test intervals),
and the functions for setting the octaves of pitches in order to create an optimal sequence
within a given voice range.

Cogito.Ficta This module makes the calculations required to apply Kircher’s suggested
accidentals, and others required by musica ficta conventions. Kircher’s rules in this
area are underspecified, and as a result this is the most experimental and interpretive
component of the software.

Scribo (“I write”) This module writes the data generated by the Cogitomodule to a music-notation
language that other software can use to put the actual notes on the screen or paper. The
submodules output to MEI-XML, and there is also limited capacity for Lilypond output
(used for testing).

11

3.1 The Ark in Haskell Data Types: Syntagmata, Pinakes, Perms

The Arca data type contains the same information as the physical ark though slightly rearranged:

-- | A vector of 'Syntagma' instances plus the other elements of the physical
-- device (tone table, vocal ranges, information matching tones to pinakes)
-- makes up the full 'Arca'.
data Arca = Arca {

perms :: Vector (Syntagma),
tones :: ToneList,
systems :: ToneSystem,
pinaxTones :: PinaxToneList,
ranges :: VoiceRanges

}

(In Haskell, the string after the symbol :: indicates the data type.) The ranges member holds the key
information of the Palimpsest phonotacticum on the front of the box, while the tones and systems
members correspond to the Mensa tonographica or tone table. The member pinaxTones supplies
the list of legal tones per pinax, which Kircher lists in various places. The Haskell version of the tone
table is optimised for quick lookup as a vector of vectors, indexed by tone number and pitch number.

The perms member of the Arca structure holds the pitch numbers and rhythmic durations from the
pinakes. This member stores the contents of the ark box – the syntagmata and pinakes – as a set
of nested vectors. Each column is a data type with two members: one vector of vperms and one
of rperms. The rperms are further subdivided by metre. At the bottom level, the pitch numbers
are stored in lists of Int types, while the durations are members of a custom Dur enumerator type.
The following excerpts show how the Haskell data structures for rhythm permutations fit within the
hierarchy of data types:

type Syntagma = Vector (Pinax)
type Pinax = Vector (Column)
data Column = Column {

colVpermTable :: VpermTable,
colRpermTable :: RpermTable

}
type RpermTable = Vector (RpermMeter)

-- | An 'RpermMeter' includes a vector of 'RpermChoir's all in one metre (see
-- the 'MusicMeter' data type above) and the length of that vector, since
-- Kircher has a variable number of 'Rperm's in the different metres in each
-- column.
data RpermMeter = RpermMeter {

rpermMax :: Int, -- ^ length of 'rperms'
rperms :: Vector (RpermChoir)

}

-- | In Syntagma I, there is only one set of rhythmic permutations that we
-- apply to all four voices of the 'VpermChoir'. But in Syntagma II, there are
-- groups of four 'Rperm's that match up with the four voices.
-- So we make a "choir" as a vector of 'Rperm's, though in Syntagma I this
-- will always just have a single member.
type RpermChoir = Vector (Rperm)

-- | The bottom part of the "rods" contain tables of rhythmic values written
-- with musical notes. We implement this using our 'Dur' data type for the
-- rhythmic values. An 'Rperm' is a list of 'Dur' values.
type Rperm = [Dur]

-- | Duration values: We use the mensural names; first the base values, then
-- dotted variants, then a series marked as rest values.
data Dur =

DurNil -- ^ unset
| Lg -- ^ longa
| Br -- ^ breve
| Sb -- ^ semibreve

12

| Mn -- ^ minim
| Sm -- ^ semiminim
| Fs -- ^ fusa
-- ...
deriving (Enum, Eq, Ord, Show)

Using these data types, then, it is possible to build the ark using the data directly from Kircher’s
tables. The similarity between Kircher’s original encoding and that used in the program is clear
in this excerpt of the code for the first column of Syntagma I, Pinax 4 (shown in Fig. 2), from the
submodule Arca_musarithmica.Syntagma1.Pinax04:

c0 = (c0v, c0r)
c0v = [

[-- 0
[5, 5, 3, 2, 3, 3],
[8, 7, 5, 7, 7, 7],
[3, 2, 3, 4, 5, 5],
[8, 5, 8, 7, 3, 3]

],
[-- 1

[5, 5, 5, 5, 5, 5],
[8, 8, 8, 7, 8, 8],
[3, 3, 3, 2, 3, 3],
[1, 1, 1, 5, 1, 1]

],
-- ...
[-- 9

[3, 4, 5, 4, 2, 3],
[8, 7, 7, 6, 5, 5],
[5, 4, 3, 8, 7, 8],
[1, 2, 3, 4, 5, 1]

]
]

c0r = [
[-- Duple

[[SbD, Mn, Mn, Mn, Sb, Sb]],
[[MnD, Sm, Mn, Mn, Sb, Sb]],
[[Mn, Mn, Mn, Mn, Sb, Sb]],
-- ...

],
[-- TripleMajor

[[Br, Sb, Br, Sb, BrD, BrD]],
[[SbR, Sb, Sb, Br, Sb, BrD, BrD]],
[[Sb, Sb, Sb, Sb, Br, BrD]]

],
[-- TripleMinor

[[Sb, Mn, Sb, Mn, SbD, SbD]],
[[Mn, Mn, Mn, Mn, Sb, SbD]],
[[MnR, Mn, Mn, Sb, Mn, SbD, SbD]]

]
]

The ark is built by converting these nested lists to the appropriate data types and storing them in
a single variable, arca, which is imported into the main program environment. To go in the other
direction and access the vperm and rperm data, the program establishes various forms of lookup
functions to map the input parameters (style, text metre, music metre, tone) to the relevant data. For
example, to select the proper pinax the computer looks up the text metre to find a pinax label and
then looks up the pinax label to find the vector index of that pinax in its syntagma. A number of
inconsistencies in Kircher’s own structuring of the data and rules for its access – for one, Syntagma I,
Pinax 3 actually includes data for two different textual metres – require explicit lookups rather than a
simple mapping of enumeration tags to vector indices.

13

3.2 Reading the Input Text

Before the digital Arca can use these data and algorithms to compose music, it must read the input
text prepared with all the information Kircher says is required. The Haskell program accepts input
files in a custom XML format, using certain elements of the Text Encoding Initiative vocabulary
(Text Encoding Initiative, 2022). The file must have a head element with the title and author of the
words, followed by a text element that includes the words to be set to music, in which the words are
divided by syllable with long (or accented) syllables marked. Here is an abridged input text for Ave
maris stella, showing the possibility of changing style, metre and tone in different sections:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE arkText SYSTEM "arkText.dtd">
<arkText>

<head>
<title>Ave maris stella</title>
<wordsAuthor>Liber Hymnarius</wordsAuthor>

</head>
<text>

<section textMeter="IambicumEuripidaeum" style="Simple"
musicMeter="TripleMajor" tone="Tone3">

<lg>
<l>`A-ve, `ma-ris `stel-la,</l>
<l>`De-i `ma-ter `al-ma,</l>
<l>`at-que `sem-per `vi-rgo,</l>
<l>`fe-lix `coe-li `por-ta.</l>

</lg>
<lg>

<l>`Su-mens `il-lud A-ve</l>
<l>Gab-ri-`el-is `o-re,</l>
<l>`fun-da nos in `pa-ce,</l>
<l>`mu-tans `E-vae `no-men.</l>

</lg>
<!-- ... -->

</section>
<!-- ... -->
<section textMeter="IambicumEuripidaeum" style="Florid"

musicMeter="Duple" tone="Tone9">
<lg>

<l>Sit laus `De-o `Pat-ri,</l>
<l>`sum-mo `Chris-to `de-cus,</l>
<l>Spi-`ri-tu-i `Sanc-to</l>
<l>`tri-bus `ho-nor `u-nus.</l>

</lg>
</section>
<section textMeter="Prose" style="Simple"

musicMeter="TripleMajor" tone="Tone9">
<lg><l>A-`men.</l></lg>

</section>
</text>

</arkText>

The text should be divided into one or more sections, and subsequently into one or more line groups
(lg elements for stanzas or paragraphs) and lines (l elements). The following attributes are required
at the start of each section, and set the main parameters needed to run the ark:

style: Either Simple or Florid
tone: One of the twelve tones (toni) as Tone1, Tone2, ... Tone12
musicMeter: Duple, TripleMajor, or TripleMinor
textMeter: One of the values in Tab. 1

The Lectio module provides the functions needed to parse this text and store it in internal data struc-
tures for further processing. These structures (including Verbum for a single word and LyricPhrase
for a group of Verbum) store the text grouped in syllables and words, along with information about

14

Table 1: Poetic metres of Arca input text, specified in the textMeter attribute of the XML input
encoding

Value Syllables Pattern

Prose 2–6 Free or irregular
Adonium 5 ¯¯ ¯̆ ˘̄ ˘ ¯¯Dactylicum 6 ¯¯ ¯̆ ˘ ¯̆ ˘̄ ˘̆ ¯¯IambicumEuripidaeum 6 ¯¯ ¯̆ ¯̆ ¯̆ ¯¯Anacreonticum 7 Penultimate long
IambicumArchilochicum 8 Penultimate short
IambicumEnneasyllabicum 9 Penultimate long
Enneasyllabicum 9 Generic
Decasyllabicum 10 Penultimate short
PhaleuciumHendecasyllabicum 11 Generic
Hendecasyllabicum 11 Generic
Sapphicum 11 and 5 Quatrains, 11.11.11.5
Dodecasyllabicum 12 Penultimate short

the poetic length of each syllable and the penultimate length in each phrase. The list of parsed phrase
information is then passed on to the Cogito module for setting to music.

The arca program, like Kircher’s original specification, assumes that its user is capable of preparing
the text as required and making the simple decisions about style, mood, and musical metre. The
program does go one step further than Kircher does to automate the composition of prose texts,
though: where Kircher expects the human user to segment the text by hand into chunks of two to
six syllables, the program does this automatically for input marked with textMeter="Prose". A
smarter algorithm could certainly be designed, but this one groups the text into the largest chunks
possible and puts the longest groups toward the end; this avoids too many choppy phrases and
increases coherence.

3.3 Setting a Phrase to Music

The Cogito module provides the functions to extract and transform data from the arca and match it
up with the processed input text. This is the function to compose the music for single phrase of text:

-- | Compose the music for a whole 'LyricPhrase' with one permutation from the
-- ark, and package it into a 'MusicPhrase'. Note that this is for a single
-- voice only, not the four SATB voices.
-- Line up pitches and syllables, skipping rests. In Syntagma I, line up text
-- and notes syllabically (one syllable per note); in Syntagma II (florid),
-- lump the text into a single syllable and put it as an incipit text at the
-- beginning of the phrase.
makeMusicPhrase :: Arca

-> ArkConfig
-> VoiceName
-> LyricPhrase
-> Perm
-> MusicPhrase

makeMusicPhrase arca config voiceID phrase perm = MusicPhrase {
phraseVoiceID = voiceID,
notes = theseNotes

} where

-- Match up pitches and syllables, skipping rests
theseNotes = map (\(pitch, syllable) -> Note pitch syllable)

$ zipFill (music voice) syllables isPitchRest blankSyllable

voice = stepwiseVoiceInRange (ranges arca) voiceRaw :: Voice
voiceRaw = ark2voice arca config penult sylCount

lineCount voiceID perm

15

range = ranges arca
penult = phrasePenultLength phrase
sylCount = phraseSylCount phrase
lineCount = phrasePosition phrase
words = phraseText phrase

-- In Syntagma II, put the whole phrase of lyrics as a single
-- syllable under the first note
syllables = case arkStyle config of

Simple -> concat $ map makeSyllables words
Florid -> [Syllable {

sylText = unwords $ map verbumText $ phraseText phrase,
sylPosition = Only }]

Within makeMusicPhrase, the function ark2voice does the work of accessing the “musarithm”
data for a specific voice (e.g., tenor) and transforming it into pitch classes and durations in the
appropriate tone. The function stepwiseVoiceInRange sets the octaves for the pitch classes in
order to produce an optimal voice leading without illicit leaps. These transformation steps involve the
most challenging programming in the project and reveal some of the difficulties inherent in Kircher’s
specification.

3.4 Setting the Octaves for Optimal Voice Leading

In the original system, before notating a pitch a user first needed to know its letter name, duration and
accidental, and then the user had to choose the appropriate octave for the pitch based on the range of
a particular voice. In the software these data make up the elements of the Pitch data type:

-- | A 'Pitch' stores the essential information for notating a single note.
data Pitch = Pitch {

pnum :: Pnum, -- ^ Enum for diatonic pitch number
oct :: Int, -- ^ Helmholtz system, middle C = 4
dur :: Dur, -- ^ Duration, one of @Dur@ enum
accid :: Accid, -- ^ Accidental
accidType :: AccidType -- ^ Type of accidental for display

-- ('Written', 'Implicit', or 'Suggested')
} deriving (Show, Eq, Ord)

Everything but the octave is pulled directly from the pinax and the tone table. Setting the octave,
however, requires more computing than it might seem, and in fact more than Kircher specifies.

Once again, we see a marked difference between computation devices designed for human operators
as opposed to what a digital machine requires. Kircher’s original palimpsest phonotacticum is
effectively a graphical computing device for setting the octave of pitches. Before matching a pitch
name and rhythm, Kircher tells the user to write a temporary dot on the appropriate staff line as shown
on the illustration affixed to the front of the ark. Having located the right series of rhythmic durations,
the user is to copy the symbol onto the staff in place of the dot. Kircher does not provide rules for
choosing between multiple valid pitch-classes within range; he only says that the user should find the
next closest pitch that is on the staff. The ark’s chart of staves with clefs, signatures for cantus durus
or mollis, and pitch names written on the lines establishes the possible range and gamut of pitches for
a particular voice. A cantus part with a C1 clef, might range from C3 to D5 if limited to notes actually
on the staff. With a cantus mollis (one flat) signature all the Bs in that range are flat. To set the octave
for a pitch, then – to know which line to place the dot on – one simply selects from any of that pitch
class within range. To find the next pitch, one calculates geometrically the shortest distance on the
staff-line graph from the previous pitch to the new pitch, provided that the new pitch is still in range.

Kircher does not give a precise definition of the ranges, but in his example Arca compositions he will
extend up to a single ledger line above or below the staves. That would give the voices the following
ranges, which are used in the software (in the _vocalRanges member of the arca structure):

Cantus A3 F5
Alto D3 B4
Tenor B2 G4
Bass E2 C4

16

Even for a human operator, though, this simple algorithm is not sufficient to establish optimal voice
leading within the range. In Kircher’s written-out realisations of the musarithms, he does not in fact
always choose the smaller interval. Especially in the bass, he sometimes opts for an ascending fifth
(especially moving to the final) rather than a descending fourth. Posing more of a problem are those
permutations in which there is a long sequence of stepwise movements in one direction (as in Ex.
2), because if the tone transposes this sequence to a position that overlaps the range boundary, it is
impossible to realise it without either going out of range or turning a second into a seventh. Kircher
warns against intervals that are too large but does not define them precisely. Human users would need
at least a little musical knowledge to resolve these situations on paper.

Kircher’s specifications were not sufficient to translate them into a computer program. Instead the
Cogito.Musarithmetic module provides the function stepwiseVoiceInRange, which attempts
to capture in programming logic the intuitive steps a human user would follow to evaluate the different
possible realisations of a vperm in a given range.

-- | Find a melody for a voice with an optimal blend of avoiding bad leaps and
-- staying within range. This is the main function used in @Cogito@.
stepwiseVoiceInRange :: VoiceRanges -> Voice -> Voice
stepwiseVoiceInRange ranges v = Voice {

voiceID = voiceID v,
music = adjust

}
where

pitches = music v
range = getRange (voiceID v) ranges
candidates = pitchCandidates range pitches
options = stepwiseTree candidates
adjust = bestPath range pitches $ paths [] options

We begin with a set of Pitch objects with the octave still unset (taken from the pinax tables), and
make a nested list containing all the possible octave values for each pitch. Because we know that we
might need to go out of range in the end, we first expand the permissible range by a third in each
direction. From these permutations we construct a tree (implemented as a left-child/right-sibling
binary tree) of every possible permutation of pitches, ending a branch if the interval between parent
and child is illegal. We define a legal leap as any interval less than a seventh, or an octave. Traversing
the resulting tree produces a list of the possible paths.

To simulate the human user’s cultural-stylistic discretion in evaluating the possibilities, we assign
each path a “badness” score based on three factors:

1. its ambitus, the total spread from lowest to highest pitch;
2. the sum of all intervals larger than a fourth;
3. for all the pitches that exceed the range, the sum of the interval by which they exceed the

range boundary:

-- | Calculate weighted "badness" score for a list of pitches.
badness :: VoiceRange -> [Pitch] -> Int
badness range ps = sum [ambitus ps,

sumBigIntervals ps * 2,
sumBeyondRange range ps * 10]

The concept of badness comes from Knuth’s TEX program (Knuth, 2011). These scores are weighted
and combined, and then the path with the lowest score is chosen (or the first path in order with the
lowest score, in case of a tie).

This algorithm yields melodies that fit reasonably within range and avoid awkward leaps. The
function does what Kircher says it should do, just in a different way. Kircher’s graphical system
would need to be adapted to a numeric one in any case, but the program required more specific rules
than he provided to evaluate the possibilities. It obviates the need for some of the makeshift remedies
that Kircher provides in place of a rigorous algorithm, which include swapping voices.

17

3.5 Accidentals and Church Keys

The other area in which the software must fill in an incomplete specification is the problem of setting
the accidental for each pitch. Kircher’s tone table only provides potential accidentals, to be applied
according to musica ficta conventions in each tonus. In practice, the problem of accidentals is a major
detriment to making the ark fully automatic, regardless of whether the operator is electronic or human.
From Kircher’s table of twelve toni ecclesiastici, accidentals are derived from the designation of each
tone as being in cantus durus or mollis, and from the accidentals included with the pitch numbers.
Cantus durus meant there were no accidentals in the signature and the tones were untransposed (with
tone I on D); cantus mollis meant there was one B flat in the signature and the tones were transposed
down a fifth (tone I on G) (Barnett, 2002). Kircher does provide some rules for when to apply his
suggested accidentals, but he also gives examples where additional accidentals must be added, and
his own notated examples contradict his specifications.

The accidental problem arises not just because of Kircher’s incomplete instructions, but because
of the structure of the tone table itself. Kircher’s table and his rules for using it represent an
underappreciated attempt to theorise the rapidly changing, chaotic state of modal and harmonic
practice in the seventeenth century. Previous scholars have seen Kircher’s tones too simply in terms
of modes or keys (Chierotti, 1994; Bumgardner, 2009; Bohnert, 2010). Kircher actually blurs
the distinction between the twelve modes defined by Glarean and Zarlino, and the new system of
toni ecclesiastici or “church keys” (Barnett, 2002). The latter developed in part from keyboardists’
practices of playing polyphonic intonations for the eight traditional psalm tones of Gregorian chant,
but more and more musicians were coming to think of “tone” as something like a key. Meanwhile
there was a separate way of understanding mode in polyphonic composition, based primarily on
the final in the lowest voice and the ambitus of the tenor voice (plagal or authentic). But Kircher
also demonstrates a growing tendency in the seventeenth century to speak prescriptively of mode
as dictating not just the final but also patterns of internal cadences as well as character and affect.
Performers using musica ficta practices tended to raise “leading tones” at cadences and sharp thirds at
the ends of phrases, and with these adjustments along with greater emphasis on bass-line movements
by fifth and other elements of tonality, the toni increasingly came to resemble either major or minor
keys.

Most of the other seventeenth-century classification systems that Barnett describes feature eight
church keys instead of Kircher’s twelve. Perhaps Kircher was trying to combine the concepts of mode,
tone, and church key, or perhaps he did not understand the difference; either way, as Barnett notes,
he was hardly alone in his confusion. Practice was changing rapidly and no one had yet provided a
consistent theory. The way Kircher codifies the tone system in the Arca should be understood as his
contribution to harmonic theory, imperfect as it is.

The tone table is typical of Kircher’s paradoxes: he maintains that there are twelve tones out of
faithfulness to tradition, but he also concedes that the traditional approach does not fully address
modern practice. As in other parts of the book his attempt to synthesise old and new results in
something that neither ancients nor moderns would recognise. Although composers of the time
wrote differently in each mode or tone, Kircher’s system simply transposes the same voice-leading
patterns. Had he used full key signatures instead of suggested accidentals, Kircher would have
produced something close to the modern system of transposable major and minor keys. As it is,
Kircher must limit the selection of tones that can be used with certain pinakes, because not every
voice-leading pattern works in every tone, given the different pattern of intervals in each. Kircher saw
a variety of toni as necessary for conveying distinct affective influences to listeners, and a system
with only major or minor keys would have broken consistency with centuries-old traditions of modal
affect associations. Kircher’s system actually highlights the affective impact of distinct toni, because
the same musarithm pattern can produce markedly different effects depending on the interval and
accidental pattern of the chosen tone.

Moreover, the user is also supposed to add other accidentals as needed in order to avoid illicit melodic
intervals in the bass, and thereby to avoid bad harmonic intervals above the bass. The basic rules
according to Kircher are these: make all Bs flat if the tone is in cantus mollis, and then, before
adjusting the other voices, one must first adjust the bass voice according to a table he provides to avoid
illicit intervals (changing B–F to BZ–F, for example). Then in the upper voice apply the accidentals
by rule: Z6̂ in the table is always flat, but Kircher says that where there is a \7̂ in the tone table, the
user should only apply the sharp when the voice is ascending to 8̂. In his realisations, though, he

18

goes beyond these rules: sometimes he raises a Z6̂, often he writes a \3̂ at cadences, and there are
numerous other exceptions. Many corner cases are unclear, such as the common idiom in the florid
Syntagma II of 7̂–6̂–8̂ in tones with \7̂ and Z6̂. What if one voice has 6̂–7̂–8̂ while another voice (in a
voice-exchange pattern) has 8̂–7̂–6̂? The top voice would have \7̂ according to Kircher’s simple rule,
but the lower voice would have ^7̂ at the same time, making an unacceptable cross relation. It would
not be hard for a competent musician of the time to resolve such cases, but Kircher does not provide
enough information for a true Tyro to complete this complex task mechanically.

The software implementation uses the rules Kircher does provide but expands them, using a multiple
pass system to adjust the accidentals in layers. We first adjust the bass line (including fixing tritones
and avoiding \7̂ when it is not moving to 8̂) then adjust the upper voices based on their own internal
patterns (raising 7̂ when ascending). Then we adjust the upper voices relative to the bass, and finally
adjust the upper voices relative to each other. The adjustments fix cross relations and impossible
intervals like an augmented fifth between bass and upper voice.

The automatic setting of O ter quaterque felix cicada (Ex. 3) demonstrates a successful output in tone
1 with florid counterpoint. The small accidentals above the staff are the result of ficta adjustments:
sharps and flats show where the program has applied Kircher’s suggested accidentals, and naturals
show where it has canceled them. The current algorithm does not handle every case appropriately,
but does avoid the most egregious problems. It still remains unclear whether with enough rules the
program could automatically produce stylistically appropriate music, or whether some features of
Kircher’s tone system and musarithm patterns make that impossible.

3.6 Encoding the Music Output

In Kircher’s final stage, the user simply copied the music symbols onto staff-ruled paper, but the
computer implementation encodes the musical output so that other programs may render it visible
and audible. This project uses the XML format of the Music Encoding Initiative, which may easily
be converted to other formats like MusicXML and Lilypond or imported into graphical notation
software (Music Encoding Initiative, 2022). The software system, then, translates two sources of
encoded data – the input text encoded in XML, and the ark data encoded in Kircher’s vperm and
rperm tables – into a third encoding system. Ex. 1 shows a portion of the automatically generated
setting of Ave maris stella in simple style as rendered by Verovio. This example represents the music
for the first line of text in the Soprano part:

<staff n="1" corresp="Cantus">
<layer n="1">

<note pname="c" oct="4" dur="breve">
<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="i">A</syl></verse>

</note>
<note pname="b" oct="3" dur="1">

<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="t">ve,</syl></verse>

</note>
<note pname="c" oct="4" dur="breve">

<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="i">ma</syl></verse>

</note>
<note pname="d" oct="4" dur="1">

<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="t">ris</syl></verse>

</note>
<note pname="e" oct="4" dur="breve" dots="1">

<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="i">stel</syl></verse>

</note>
<note pname="e" oct="4" dur="breve" dots="1">

<accid accid.ges="n"></accid>
<verse><syl con="d" wordpos="t">la,</syl></verse>

</note>
<barLine></barLine>

19

Example 3: Automatic setting of Stephanus, O ter quaterque felix Cicada in tone 1, florid style, with
musica ficta adjustments (Arca MEI output rendered by Verovio)

<!-- ... -->
</layer>

</staff>

The program’s Note data type was designed to map easily onto the MEI note element, which
combines pitch information with a syllable text. The members of the Pitch structure translate
directly to the XML attributes or subelements of the MEI note. To render the whole Phrase (one
line of input text, set to music by the ark) into MEI, we map note2mei over the phrase and add
barlines at the section divisions marked in the input text. The program takes advantage of MEI’s
alternative mensural mode, in which music may be structured one voice (MEI layer) at a time rather
than being organised by measure. The web application uses Verovio to render the MEI to graphical
notation (SVG) and sound (via MIDI).

20

Putting all these elements together, the application’s main function builds the ark, reads and parses the
input text, and generates a list of random numbers to select permutations for each phrase. The function
makeMusicScore generates the music and score2mei to converts the internal data structures to
MEI output. This is the central portion of the application:

main :: IO ()
main = do
-- ...
let

input = readInput rawInput
sections = prepareInput input
lengths = inputPhraseLengths sections
metadata = arkMetadata input

perms <- inputPerms lengths

let
score = makeMusicScore arca sections perms
mei = score2mei arca metadata score

-- ...
writeFile outfile mei

The simple web app (in Javascript and PHP) wraps a convenient user interface around the Haskell
program to enable users to select either fully prepared input texts, or make their own choices about
style, tone (based on mood), and metre.

4 Musical Computing and Mechanical Composition

In sum, even before its implementation as a computer program, Kircher’s Arca musarithmica was
already a computational system. The Arca includes multiple kinds of structured data and algorithms,
and in the words of Niklaus Wirth’s memorable title, Algorithms + Data Structures = Programs
(Wirth, 1976). The system does not meet every modern definition of a computer, since its data
structures are not always consistent and its algorithms not completely specified. Considered as
a physical device with a human operator, though, Kircher’s system is reasonably optimised and
specified fully enough that most people capable of reading the Latin instructions would be able
to follow the steps and with enough patience, generate a composition. The ark’s structure makes
the process nearly automatic for a human user, including the visual indexing of the box’s internal
structure, the ability to physically move and rearrange the pinakes in their order of use, and the
palimpsest system for finding in-range pitches graphically. For Kircher’s learned readers, parsing
and metrifying a Latin poetic text would not perhaps have been an obstacle, but some of the musical
decisions required to achieve optimal stepwise voice leading and appropriate accidentals would
require more knowledge than an amusicus would have.

The digital implementation demonstrates that with some modifications Kircher’s system can be made
to work as a single function transforming an input text and parameters into an output of encoded
music. Most of the modifications are just implementation details needed for a user that at base level
only understands arithmetic, Boolean conditionals, and memory registers, though we have seen there
are also several areas where greater specification was needed.

Being written as a Haskell program clarifies the structure of flows from input to output. Every function
in the program includes a signature showing a series of data types moving from input to output. The
arguments to the initial function are shown in series because Haskell functions are actually curried:
functions with multiple arguments are actually composed from a series of functions, each of which
receives a single input and returns a single output. The arca program’s primary function takes as
input the ark data, the processed input text, and the random permutation numbers, and outputs a data
structure for the entire music score:

-- | Compose the music for the whole document as a 'MusicScore',
-- pulling the data from the 'Arca'.
makeMusicScore :: Arca -> [LyricSection] -> [SectionPerm] -> MusicScore
makeMusicScore arca lyricSections sectionPerms =

zipWith (makeMusicChorus arca) lyricSections sectionPerms

21

style syntagma

text metre pinax

syllable text

syllable length

line position

column

choice/random vperm

rpermmusic metre

rperm metres

metre signature

mood tone

key signature

pitch name

accidental

pitch class

ranges octave

duration

Figure 4: The entire ark system: Flows from inputs through functions to outputs

The flow of inputs to outputs in the digital implementation is the same as in the physical system. The
chart in Fig. 4 focuses on the output of a single note, ignoring the larger structural divisions. The
chart does not account for the adjustments we must make only after we have put together the whole
series of notes (setting the octave and accidentals based on intervals between notes).

Many of the flows in the chart can be seen clearly in the pair2pitch function, which takes the pair
of pitch and rhythm values from the ark tables and returns a Pitch data structure that includes pitch
name, accidental, octave and duration:

pair2Pitch :: ToneList -> ToneSystem -> Tone -> (Dur, Int) -> Pitch
pair2Pitch toneList systems tone pair

| isRest thisDur = newRest thisDur
| otherwise = newPitch
where

newPitch = Pitch {
pnum = thisPnumInTone,
accid = thisAccid,
accidType = thisAccidType,
oct = 4, -- dummy value, will be adjusted
dur = thisDur

}
thisPnum = (snd pair) - 1 -- adjust to 0 index
thisDur = fst pair
thisPnumInTone = fst tonePitch
thisAccid = snd tonePitch
tonePitch = pnumAccidInTone thisPnum toneList tone

thisAccidType = case thisAccid of
Na -> Implicit
Sh -> Suggested
Fl -> if isBflatInSignature thisPnumInTone thisAccid tone systems

then Implicit
else Suggested

_ -> None

The arca program is as faithful to Kircher’s original design as possible, but it also surpasses the
incomplete specification to become a true, fully automatic composition machine. Thus an erstwhile

22

Table 2: Number of musica ficta corrections applied by arca software in permissible tones

Tone
Input text Style 1 2 3 4 5 6 7 8 9 10 11 12 Total Mean

Ave maris stella Simple 20 20 20 10 20 0 90 15.0
Ave maris stella Florid 16 16 14 9 4 4 14 14 16 4 3 4 118 9.8
Ave Regina angelorum Simple 5 0 7 4 0 16 3.2
Ave Regina angelorum Florid 27 27 22 11 27 4 118 19.7
Nubibus atris Simple 8 11 8 6 5 0 3 3 8 5 0 0 57 4.8
Nubibus atris Florid 0 0 5 5 0 0 10 1.4

“recipe box” full of tables, taken along with Kircher’s written specifications, has become a single,
complete algorithm for computing music.

4.1 Testing and Evaluation

I have tested the system by running the program with each of Kircher’s paradigm texts and others,
including in Spanish and English, that match his poetic metres; and with Latin psalm texts in Prose
metre. For each input text I have tried every permissible tone and metre, as well as constructing more
complex input by putting different sections in different tones and metres. Several other users have
helped me test the web app version, including by writing their own texts (which the web app sets in
Prose metre). The program sometimes fails because of errors that still lurk in Kircher’s original data
or in my transcription; but I have seen no evidence of problems with the basic logic of the program.
Problems with the web app usually arise from the interaction between the Haskell executable and
third-party software – the Javascript implementation of Verovio notation software and the MIDI
engine. (Bug reports are welcome!)

To verify that the Haskell program works as intended and avoids non-deterministic side effects, I
created a test application that bypasses the random-number generator in the Fortuna module and
instead requires the user to specify permutation numbers manually. Since the program only has two
non-deterministic elements – the input file and the random choice of permutations – I wrote scripts to
run the program repeatedly with the same input file and the same permutation selections and compare
the SHA1 checksums of the output files. As expected, the output files were identical.

To evaluate the basic functioning of the program I compared its output with settings I made by hand
using Kircher’s original materials. Ex. 4 shows my manual setting of Ave maris stella, using the
first voice and rhythm permutation in each column of Syntagma I, Pinax 4. The example shows
how voice permutation numbers match up with Kircher’s tone table and highlights where accidentals
from that table were altered. Annotations show the two places where the software output differed;
both resulted from different choices of octaves in the bass voice. In my version, I opted to have the
tenor cross above the alto voice at the end; the computer had the tenor cross under the bass. Both
were plausible, and neither, perhaps, was ideal, though certainly by post-1650 standards it would be
preferable to preserve the Bass as the lowest voice. Though my own choices of musica ficta were
more intuitive – e.g., recognising that harmonic movement to F required C naturals – the program,
which does not analyse harmony but only applies contextual rules for counterpoint, nevertheless
made the same choices. These tests confirmed that the program successfuly finds the appropriate
permutations of pitch numbers and rhythm symbols, converts the pitch numbers to pitch names and
accidentals according to the tone, fits the pitches into the required vocal ranges while preserving
stepwise voice-leading, and applies a reasonable number of musica ficta alterations to produce correct
output according to common standards of Kircher’s time. The program may make different choices
than a human user about stepwise voice-leading in range, or about discretionary accidentals, but in
most cases the results match up with those of a human with training in music and basic familiarity
with late-Renaissance European polyphony.

The musica ficta functions are far from perfect, but to allow for debugging and improvement, the
program logs each adjustment. I ran the program with one stanza of a given input text in both simple
and florid style, in every tone that was permissible for that poetic metre and style, and counted the
number of adjustments in each. The results (Tab. 2) show that different tones require dramatically
different numbers of accidental adjustments. In general there are more adjustments in florid style
than simple, primarily because there are more notes in florid style.

23

5

�
7

��
6

� �
8

��
Tone 1

1

� �
3 4

��
2

7

�

�

3

�
3

�

�
3

�

�
5

�

�

�
4

��
7

�
2

�
7

�

�

�

�
4

��
7

�
2

�
�

7

��
5

��
7

�
3

�
3

3

�
4

�
�

7

7

�
3

��
7

�

�
5

�
3

�
8

5

�
2

��

Computer: 8va bassa

Computer: 8va
Computer: 8va

1

�
4

�

�

�
2

�
5

�
7

�
5

�
3

�
8

�

�
4

�
6

1

�

�

5

3

�
�

3

�
5

�
1

�
3

��
7

�
5

�
37

�
2

��
7

�
4

�
� �

5

��
7

�
3

3

�

�
�
3

��
7

�
5

�
3

�

�� �
8

�
�

3

�

�

��

	

� �
5

��
8

�
8

��
8

�

�

�
3

�
5

�
3

8

7

�
5

��

�
2

�
5 5

�

�
2

�
7

�
5

��

�
4

�
8

�
8

6

�

�

�

�
5

��
7

�
3

�
3

�

�

�
3

�
5

�

�

3

4

��
7

�
2

�
�

7

�

�
2

�
7

�
5

�
5

�

�

8

Example 4: Manual setting of Ave maris stella using the original Arca musarithmica system, compared
with automatically-generated software setting (rendered by Lilypond)

It is notable that not every text can be set in every tone, and that some tones seem to be problematic
for texts in certain metres, as demonstrated by comparing the mostly reasonable output for Nubibus
atris in tone 6, with zero ficta alterations, to the heavily adjusted and musically uncouth setting in
tone 2 (Fig. 5). These disparities in tonal treatment would cause headaches for someone trying to
create a complex composition with the Arca that went back and forth between simple and florid style
and shifted modes. Another way of looking at it, though, is that Kircher is already very close to a
major/minor modal system, and that the further a tone is from major or minor, the more adjustments
his rules require in order to bring it back in line with major or minor. In other words, Kircher’s
system applies complex and arcane rules in order to allow Kircher to maintain the notion of twelve
modes while effectively producing near-tonal music in major or minor keys. Kircher’s system, as
implemented in software, makes it possible to test Kircher’s tonal theories in practice; and the results
suggest that, typically for Kircher, there is a considerable tension between the traditional theory of
twelve modes and the emerging contemporary practice of effectively major and minor tonality, as
scholars have already observed in this period (Barnett, 2002). Kircher’s tone system deserves much
deeper exploration, but this example suggests ways the software implementation could aid in that
research.

The pure-functional nature of Haskell and these tests of the software validate that the program does
exactly what it says. Does that mean the program is a faithful exemplar of the Arca musarithmica,
and that we can therefore make conclusions about the Arca based on the software? To a large but
not complete extent, the digital Arca is both functionally equivalent (the same inputs yield the same
outputs) and semantically equivalent (the inputs are transformed into outputs using the same process)
to Kircher’s specification. We have verified that in the simple example of Ave maris stella, the
program does generate the same output that a human user of the original analogue system would
produce. The software algorithm might therefore be considered a subset of the procedures Kircher
describes for a human user. In other words, the software does things that Kircher prescribes and in the
way that he prescibes them; but Kircher also includes other discretionary procedures, less completely
specified, that a human operator could perform additionally. Some of Kircher’s algorithms required
translation for a digital automaton working with binary numbers, but for the most part the Haskell
functions are semantically equivalent to the original tasks: the computer is using different techniques
to make the same calculations as a human user. Kircher’s full specification is not strict enough or
complete enough to translate exactly into a computer program; the system gives more creative and
discretionary options to a human user. Kircher seems to have expected a human user to adapt and
refine the results, smooth over rough edges, and correct errors in the data tables. The most ambitious

24

Nu bi bus a tris

Nu bi bus a tris

Nu bi bus a tris

Nu bi bus a tris

con di ta nul lum

con di ta nul lum

con di ta nul lum

con di ta nul lum

fun de re pos sunt

fun de re pos sunt

fun de re pos sunt

fun de re pos sunt

si de ra lu men.

si de ra lu men.

si de ra lu men.

si de ra lu men.

Nu bi bus a tris

Nu bi bus a tris

Nu bi bus a tris

Nu bi bus a tris

con di ta nul lum

con di ta nul lum

con di ta nul lum

con di ta nul lum

fun de re pos sunt

fun de re pos sunt

fun de re pos sunt

fun de re pos sunt

si de ra lu men.

si de ra lu men.

si de ra lu men.

si de ra lu men.

Nubibus atris Simplex Sexti toni mutans in secundum tonum
Arca musarithmica Athanasii Kircherii MDCLBoethius (Consolatio philosophiae I:7)

Example 5: Arca setting of Boethius, Nubibus atris, with the same manually-selected permutations,
comparing automatic musica ficta in tone 6 and tone 2 (MEI output rendered by Verovio)

goals of his system, including the ability to match rhetorical features in the poetry with appropriate
musical figures, depend on the mysterious third syntagma, the details of which apparently died with
Kircher. The program also does a few things more than Kircher specifies, such as automatically
parsing texts marked as prose, and, in the web-app version, it also performs the music by generating
audio.

With some reservations, therefore, we may treat the Arca program as a faithful representation of
Kircher’s system. That means we can use the software as a tool to explore questions about the
original system. Lines of research could include detailed comparison of Kircher’s example Arca
compositions with software-generated output, and systematic analysis of the individual permutations
built into the Arca and comparison with known music, possibly leading to identifying specific sources
or schemata-like musical building blocks in other music of the time.

If Kircher’s device is to be judged by the output of this software implementation, my tentative
conclusion would be that Kircher either oversells the Arca or he was not as knowledgeable about
contemporary composition as he claimed to be. The building blocks are premade, and on their own
the permutations do sound like fragments of mid-seventeenth-century sacred choral or organ music
from Italy or elsewhere in the Catholic world; their contrapuntal figures and resulting harmonic
motion are correct and stylistically appropriate (except for sporadic mistakes). The problem is in the
core function of the Arca, which is assembling those blocks into a flow of musical ideas. Kircher
may have imagined that a human user would select permutations with informed discretion in order
to create a good flow, but the computer chooses randomly and the results sound like it. In simple
counterpoint, there is no discernable melody, and harmonic centers jump around chaotically. In
florid counterpoint, each permutation provides a new point of imitation on a motive unrelated to any
previously heard, except when whole permutations repeat; the texture is sometimes more like a fugue,

25

other times more like a motet, and again the harmonic motion seems unpredictable. Despite Kircher’s
emphasis on rhetoric, then, the compositions produced by his device do not present any coherent
musical ideas (what Bach would later call inventiones) that would produce a unified musical discourse
(Chierotti, 1994). In terms of prosody, the Arca will put the same rhythms to every line of a poem in
a certain metre. For unambitious, regular texts such as the indigenous vernacular hymns that Kircher
imagined his Jesuit brothers setting to music using the Arca, this would work fairly well, but it does
not adapt to the subtle shifts of accentuation and stress that are found in real-world poems. Rather like
early versions of today’s AI chatbots, Kircher’s system produces a kind of stream-of-consciousness
music that works at the moment-to-moment level but does not add up to anything intelligible at the
larger level. Nevertheless the program’s output is still realistic enough that a musicology student
overhearing the web app’s generated MIDI organ performance of the Arca output from a room away
might come in to ask who composed that odd organ prelude. Given that to my knowledge there is no
other system even today that can generate contrapuntal music in a circa 1650 style, that seems like an
impressive accomplishment.

Is the Arca musarithmica (in original or digital forms) a creative system? For the software imple-
mentation, I would not argue that it is a creative system except in the most literal sense that the
program creates new output each time. As noted, the only non-deterministic component is the random
selection of permutations. Though deterministic, the algorithm for generating stepwise melodies in
range does involve an estimation of stylistic “badness” that could perhaps be considered a kind of
artistic discernment on the part of the computer, but that is the only element of the system that would
raise such a possibility.

For Kircher’s original, human-operated system, however, the answer is more complicated. First, I am
not convinced that Kircher intended the system to be as deterministic as the software implementation
is. Throughout Kircher’s description, he continually blurs the line between algorithmic process and
human discretion. He expected users to pick an appropriate permutation to fit in a given position in
the composition, and he allowed many extensions, such as modulating modes mid-phrase or adapting
the permutations through transposition, switching voices, or even taking apart permutations and
repeating individual voices to create canonic passages. As is often the case with Kircher, though, what
might seem like inconsistency actually points to the difference between his early modern Catholic
worldview and ours, and bears witness to the considerable tensions that were destabilising that system
in the early years of the Scientific Revolution.

5 The Ark as Encapsulation of Compositional Knowledge

The Arca musarithmica in its original form, I conclude, is a creative system for mechanical com-
position, but one that embodies distinctive early modern concepts of creativity, composition, and
machines. Kircher’s concept of creativity was based on finding and combining patterns that were
latent in a divinely ordered universe. When Kircher says his goal is to create a system for “artificial”
(artificiosus) composition, he is using the word in an early modern sense where art more readily
connoted a practice or technique. The seventeenth-century European or colonial composer was, in
modern terms, more an artisan than an artist. An artificial system would be one built on artifice, one
created by tools and ingenuity rather than a natural part of the created world. The point of artifice
was to imitate the natural world, to draw out its hidden patterns and order.

The basic principle of the ark is to arrange preformulated patterns into a new combination, and as
Chierotti argues, this practice is none other than the rhetorician’s art of dispositio (Chierotti, 1994,
407–409). In the Classical practice of preparing a speech (derived from authorities like Quintillian
and Cicero) that stage of arranging an argument was preceded by inventio, coming up with an idea.
It may seem that the ark eliminates this first step by providing a set of musical ideas which only
need to be combined, obviating any expressive or communicative role of the human creator, but
such a view would stem from a modern concept of “invention” as original creation. In Kircher’s day,
invention meant as much “discovery” as creativity. One had to find the ideas, and the artisan’s craft
was displayed in how the craftsman manipulated existing materials. A carpenter needed a pattern,
tools, and lumber to begin, but his reputation depended on his ability to turn the raw materials into a
finished product according to the plans.

Recent research has shown that European musicians of the seventeenth and eighteenth centuries,
as late as J. S. Bach and Mozart, constructed their music from preexisting patterns, according to

26

well-known, standard techniques (Dreyfus, 1996; Gjerdingen, 2007). Gjerdingen has shown that
composers trained in eighteenth-century Neapolitan conservatories were taught to build up a repertoire
of conventional voice-leading patterns and to assemble these, with elaboration, into full compositions.
Using such practical methods did not inhibit composers from conveying sophisticated poetic concepts
and creating dramatic effects; instead, they actually enabled that communication by appealing to
common tropes familiar to a community of listeners (Cashner, 2022a). Completely apart from
its status as a computational system, Kircher’s Arca merits study as a repository of conventional
mid-seventeenth century voice-leading patterns.

In this light, then, Kircher’s device fits well within an early modern concept of musical craft. As a
human-operated system, preserving the user’s ability to choose permutations intelligently and adjust
them with discretion, the ark merely codifies and reduces the set of combinations available to the
user and makes it easier for the human composer to “find” them. By ensuring that each individual
combination is already a coherent and rule-compliant musical idea (inventio), and by providing an
algorithm for arranging the ideas (dispositio), the ark eases the burden of a human operator, who
no longer has to check each bar for such errors as parallel fifths or octaves. (This would be even
more effective if Kircher himself had successfully avoided such errors in the ark!) In that way the ark
fulfills the same purpose as other computing devices, from multiplication tables through Napier’s
bones and slide rules, which is to reduce the number of calculations required by storing precalculated
results.

Kircher’s procedure of finding appropriate music for one phrase of text at a time does correspond to
the text-setting practice of many composers of his age. On the other hand, the lack of any motivic
connection between the permutations contradicts a core principle of rhetoric, that an oration should
focus on one central theme. For master musicians of Kircher’s time, applying that principle to music
meant carrying a single idea (“invention”) or motive throughout a work (Jacobson, 1982). This
discrepancy between Kircher’s stated rhetorical ideal and actual contemporary musical-rhetorical
practice reflects a tension throughout the Musurgia between the idea of music as an orderly, rule-based
system, and the idea of music as a form of rhetoric and an expression of human passions.

If Kircher’s system reflects widespread attitudes about composition, then, it also reflects widespread
misunderstandings. The fact that composers communicated with existing conventions does not mean
that their work was purely mechanical. The task of creating music could not be reduced to numerical
calculation, and Kircher’s system does not in fact succeed in doing so. The machine does something
with music that is analogous to mathematical calculation, but it also demonstrates the limits of trying
to reduce music to pure number.

The gap between theory and practice also shows when trying to take up Kircher on his promise
that the Arca may be used to set texts in any language. Kircher hoped that his fellow Jesuit priests
in overseas missions could use the Arca to generate music in local languages (Kircher, 1650, II:
126–141). The arca program does show that this is technically possible. The Shakespeare text “If
music be the food of love, play on” (from The Tempest) included on the website demonstrates the
ark’s ability to set non-Latin texts with reasonably good results. Though finding or creating non-Latin
texts that fit one of Kircher’s Classical metres is a major impediment, if the textMeter is set to
Prose, the program will automatically set any kind of text. As a manual system, though, Kircher’s
Arca cannot have proved very useful to the pragmatic needs of missionary priests in Goa or Nagasaki.

Kircher was never strong on practicalities, in any case, and I would argue that his real goal for
the Arca was to encapsulate universal musical knowledge in one device. This idea of epitomising
all knowledge of a domain through describing an imaginary computing device is echoed in many
respects by Donald Knuth’s invention of the MIX computer in The Art of Computer Programming,
especially given that Knuth’s first major application of the device is to permutations (Knuth, 1997,
124–144, 164–175). The Arca epitomises the overall theological argument of the Musurgia that music
embodies the order of God’s creation and reflects the perfection of God’s nature, while it also has a
powerful effect on the human body and soul, and serves as a form of communication and expresssion.

Like many of his seventeenth-century contemporaries, Kircher understood music as “sounding
number”, an embodiment of the mathematical order inherent in God’s created universe, and a
reflection of the perfection of God himself. The Puebla copy of the Arca musarithmica is preserved
in a manuscript miscellany of notes on mathematical subjects, including geometry (with attempts to
solve the impossible problems of squaring the circle and trisecting the angle), astrology, chronology,
and tax accounting (Cashner, 2022b). All of those forms of speculation and inquiry involved number

27

https://www-cs-faculty.stanford.edu/~knuth/mmix.html

in the attempt to trace hidden patterns of connection, and this is what Sor Juana termed “Kircherising”.
Out of the infinite variety of possible combinations of notes and rhythms, the user of the ark selects a
specific set of permutations and thus imitates God in his original act of creation.

It does seem that Kircher thought of the Arca musarithmica as a kind of machine, but in saying that
we must keep in mind that Kircher and all his contemporaries were working with a preindustrial
conception of machines. In 1650 there were no industrial machines on the planet that could, under
their own power, generate a given output from a given set of inputs. Kircher simply could not have
imagined the seemingly infinite replicability of modern machines. Kircher’s idea of musical creativity
was mechanical in many ways, but it could never be fully mechanised.

Kircher understood the world to be a well-ordered, rational system, governed by God, in which
humans had free will, though their actions were subject to judgment under God’s laws. This idea is
epitomised by one of the paradigm texts Kircher chose for the Arca, the hymn Iste confessor Domini:

Sit salus illi, decus, atque virtus Let salvation, goodness, and power
Qui supra caeli residens cacumen, be unto him who, seated over the heavens,
Totius mundi machinam gubernat governs the mechanism of the whole world,
Trius et unus. three in one.

For Kircher, the whole world was a machine, but in his preindustrial imagination that meant only that
it was a harmonious system. Kircher was fascinated, as Newton would be a few decades later, with
the idea that the universe ran like a giant clockwork. In the Musurgia Kircher used another complex
machine, the pipe organ, as a picture of God’s act of creation, playing the world into being (Cashner,
2020, 44–52, 159–165). Built into the organ – perhaps the most complex machine yet devised at the
time – were all the patterns necessary to make good music, from the harmonic series to modes and
scales, temperament, acoustics, and instrument timbres. But a creative musician still needed to sit at
the bench and draw out those possibilities. Elsewhere in the Musurgia Kircher pictured mechanical
organs and other automata, but these were only imitations of God’s act of creation, the prelude that
he performed to craft the magnificent machine of the world. Likewise the Arca musarithmica could
never have been a replacement for human composers, but on the one hand (Kircher imagined) it might
have been a practical tool to ease their labours, and on the other hand it stood as a demonstration both
of what creativity was (assembling building blocks, working within an orderly system) and what it
was not (random, deterministic, automatic).

In our age, the Arca has an additional role as an embodiment of Kircher’s own knowledge of
music, and a window into early modern concepts of creativity. In this digital implementation, the
Arca musarithmica not only enables someone with no knowledge of music to compose, as Kircher
intended; it also brings to life a forgotten body of musical knowledge. The ark encodes precalculated
knowledge of seventeenth-century music, a library of musical invention, that generates output that one
of Kircher’s Roman contemporaries like Carissimi would probably have recognised as music, even
if somewhat monotonous and with occasional quirks and errors. The awkward results of operating
Kircher’s system with a digital automaton only highlight how much of a human element was assumed
in the original.

There are manifold possibilities for extending Kircher’s design, including using machine-learning
techniques to improve the permutation data or the composition process, and even replacing the
pinax tables with music in other styles or metrical patterns better suited to other languages. The
machine-readable MEI output of the Arca program could be analysed by computer and compared
to other digitised corpora, which might even reveal the sources for Kircher’s permutations. With a
digital implementation accessible to anyone on the Internet, musical Tyros and experts alike can do
what Kircher hoped, and with no more work or knowledge than the click of a few buttons, they can
generate and hear limitless permutations of never-before-heard, newly composed seventeenth-century
music.

References
Annibaldi, C. (1995). Froberger in Rome: From Frescobaldi’s craftsmanship to Kircher’s composi-

tional secrets. Current Musicology, 58, 5–27.
Barendregt, H., & Barendsen, E. (2000). Introduction to lambda calculus [Unpublished textbook].

http://www.cs.ru.nl/~herman/onderwijs/provingwithCA/lambda.pdf

28

http://www.cs.ru.nl/~herman/onderwijs/provingwithCA/lambda.pdf

Barnett, G. (2002). Tonal organization in seventeenth-century music theory. In T. Christensen (Ed.),
The Cambridge history of Western music theory (pp. 407–455). Cambridge University Press.

Beuchot Puente, M. (1995). Sor Juana y el hermetismo de Kircher. In Los empeños: Ensayos en
homenaje a Sor Juana Inés de la Cruz (pp. 1–9). Universidad Nacional Autónoma de
México.

Bohnert, A. C. (2010). Die arca musarithmica Athanasius Kirchers [Dissertation, Technische Univer-
sität Berlin]. Mensch und Buch Verlag.

Boni, E. (2020). L’arca musurgica di Athansius Kircher alla Biblioteca nazionale centrale di Firenze.
Accademie & Biblioteche d’Italia, 15(1), 7–13.

Bumgardner, J. (2009). Kircher’s mechanical composer: A software implementation [Paper presented
at the Bridges Conference, Banff]. https://jbum.com/papers/kircher_paper.pdf

Cashner, A. A. (2020). Hearing faith: Music as theology in the Spanish Empire. Brill. https://doi.org/
10.1163/9789004431997

Cashner, A. A. (2021). Arca [Computer program]. https://github.com/andrewacashner/kircher
Cashner, A. A. (2022a). Bringing heavenly music down to earth: Global exchange and local devotion

at Segovia Cathedral, 1678. Music and Letters, 103(1), 27–59. https://doi.org/10.1093/ml/
gcab106

Cashner, A. A. (2022b). Kircherizers and trisectors: Athanasius Kircher’s automatic composition
system in the Spanish Empire. Anuario musical, (77), 51–75. https://doi.org/10.3989/
anuariomusical.2022.i77

Cashner, A. A. (2023). Arca musarithmica: A device for automatic music composition from 1650.
https://www.arca1650.info

Chierotti, C. M. (1992). La musurgia mirifica di Athanasius Kircher: la composizione musicale alla
portata di tutti nell’età barocca. Musica/realtà, 13(37), 107–127.

Chierotti, C. M. (1994). Comporre senza conoscere la musica: Athanasius Kircher e le “Musica
mirifica”: un singolare esempio di scienza musicale nell’età barocca. Nuova rivista musicale
italiana, 28(3), 382–410.

Dreyfus, L. (1996). Bach and the patterns of invention. Harvard University Press.
Findlen, P. (Ed.). (2004a). Athanasius Kircher: The last man who knew everything. Routledge.
Findlen, P. (2004b). A Jesuit’s books in the New World: Athanasius Kircher and his American readers.

In P. Findlen (Ed.), Athanasius Kircher: The last man who knew everything (pp. 329–364).
Routledge.

Fletcher, J. E. (2011). A study of the life and works of Athanasius Kircher. Brill.
Gjerdingen, R. O. (2007). Music in the galant style. Oxford University Press.
Godwin, J. (2009). Athanasius Kircher’s theater of the world: The life and work of the last man to

search for universal knowledge. Inner Traditions.
Haskell.org Committee. (2024). Haskell: An advanced, purely functional programming language.

https://www.haskell.org
Ifrah, G. (2001). The universal history of computing: From the abacus to the quantum computer

(E. F. Harding, Trans.). John Wiley & Sons, Inc.
Irving, D. (2010). Colonial counterpoint: Music in early modern Manila. Oxford University Press.
Jacobson, L. (1982). Musical rhetoric in Buxtehude’s free organ works. The Organ Yearbook, 13,

60–79.
Kircher, A. (1650). Musurgia universalis, sive Ars magna consoni et dissoni in X. libros digesta.
Klotz, S. (1999). “Ars combinatoria” oder “Musik ohne Kopfzerbrechen”: Kalküle des Musikalischen

von Kircher bis Kirnberger. Musiktheorie, 14(3), 230–245.
Knuth, D. E. (1992). Literate programming. Center for the Study of Language and Information.
Knuth, D. E. (1997). The art of computer programming, volume 1: Fundamental algorithms. Addison-

Wesley.
Knuth, D. E. (2011). The TeXbook (millenium edition) [Originally published 1984]. Addison-Wesley.
Lewis, F. D. (1996). Fundamentals of theoretical computer science [Unpublished textbook, Uni-

versity of Kentucky]. http://cse.ucdenver.edu/~cscialtman/foundation/Essentials%20of%
20Theoretical%20Computer%20Science.pdf

Murata, M. (1999). Music history in the Musurgia universalis of Athanasius Kircher. In J. W.
O’Malley, S.J., G. A. Bailey, S. J. Harris, & T. F. Kennedy, S.J. (Eds.), The Jesuits: Cultures,
sciences, and the arts 1540–1773 (pp. 190–207). University of Toronto Press.

Music Encoding Initiative. (2022). Guidelines (4.0.1). https://music-encoding.org/guidelines/v4/
content/

29

https://jbum.com/papers/kircher_paper.pdf
https://doi.org/10.1163/9789004431997
https://doi.org/10.1163/9789004431997
https://github.com/andrewacashner/kircher
https://doi.org/10.1093/ml/gcab106
https://doi.org/10.1093/ml/gcab106
https://doi.org/10.3989/anuariomusical.2022.i77
https://doi.org/10.3989/anuariomusical.2022.i77
https://www.arca1650.info
https://www.haskell.org
http://cse.ucdenver.edu/~cscialtman/foundation/Essentials%20of%20Theoretical%20Computer%20Science.pdf
http://cse.ucdenver.edu/~cscialtman/foundation/Essentials%20of%20Theoretical%20Computer%20Science.pdf
https://music-encoding.org/guidelines/v4/content/
https://music-encoding.org/guidelines/v4/content/

Osorio Romero, I. (1993). La luz imaginaria: Epistolario de Atanasio Kircher con los novohispanos.
Universidad Nacional Autónoma de México.

Pangrazi, T. (2009). La Musurgia universalis di Athanasius Kircher: Contenuti, fonti, terminologia.
Leo S. Olschki.

Schott, G. (1661). Cursus mathematicus sive absoluta omnium mathematicarum disciplinarum
encyclopædia, in libros xxviii digesta.

Text Encoding Initiative. (2022). P5: Guidelines for electronic text encoding and interchange. https:
//tei-c.org/release/doc/tei-p5-doc/en/html/index.html

Trabulse, E. (1984). El círculo roto. Fondo de Cultura Económica.
Wald, M. (2006). Welterkenntnis aus Musik: Athanasius Kirchers “Musurgia universalis” und die

Universalwissenschaft im 17. Jahrhundert. Bärenreiter.
Weckmann, M. (1980). Choralbearbeitungen: Für Orgel (W. Breig, Ed.). Bärenreiter.
Wikibooks contributors. (2018). Haskell. Wikibooks. https://en.wikibooks.org/wiki/Haskell
Wirth, N. (1976). Algorithms + data structures = programs. Prentice-Hall.

30

https://tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://en.wikibooks.org/wiki/Haskell

	An Ark of Musical Invention in Infinite Permutations
	The Arca as a Human-Optimised Computational System
	Kircher’s Data Structures: Syntagmata, Pinakes, Musarithms
	Encoding Pitches and Rhythms
	Optimised for Automatic Human Operation

	Implementing the Ark for a Digital Automaton
	The Ark in Haskell Data Types: Syntagmata, Pinakes, Perms
	Reading the Input Text
	Setting a Phrase to Music
	Setting the Octaves for Optimal Voice Leading
	Accidentals and Church Keys
	Encoding the Music Output

	Musical Computing and Mechanical Composition
	Testing and Evaluation

	The Ark as Encapsulation of Compositional Knowledge

