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Abstract

We introduce the notion of multi-patterns, a combinatorial abstraction of polyphonic
musical phrases. The interest of this approach in encoding musical phrases lies
in the fact that it becomes possible to compose multi-patterns in order to produce
new ones. This composition is parameterized by a monoid structure on the scale
degrees. This embeds the set of the musical phrases into an algebraic framework
since the set of the multi-patterns is endowed with the structure of an operad.
Operads are algebraic structures offering a formalization and an abstraction of the
notion of operators and their compositions. Seeing musical phrases as operators
allows us to perform computations on phrases and admits applications in generative
music. Indeed, given a set of initial multi-patterns, we propose various algorithms
to randomly generate a new and longer phrase emulating the style suggested by the
inputted multi-patterns. The designed algorithms use types of grammars working
with operads and colored operads, known as bud generating systems.

1 Introduction

Generative music is a subfield of computational musicology in which the focus lies on the automatic
creation of musical material (Collins, 2008; Diaz-Jerez, 2000; Fernández & Vico, 2013). This
creation is based on algorithms accepting inputs to influence the result obtained. Such algorithms
could have a randomized behavior in the sense that two executions of the algorithm with the same
inputs produce different results. One of the challenges to overcome in designing such an algorithm
consists in building a procedure offering a balance between freedom of what is created and adequacy
with the specified inputs. As a matter of fact, the expression generative music is usually understood as
a class of methods producing music by rules, with a possibly deterministic behavior (Loy & Abbott,
1985).

Several very different approach exist, each with their own advantages and areas of applications. For
instance, some algorithms use Markov chains (Ames, 1989; Shapiro & Huber, 2021), others genetic
algorithms (Gartland-Jones & Copley, 2003; Matić, 2010), still others neural networks (Briot et al.,
2020), or even —and directly related to the present work— formal grammars (Bel, 1989; Eibensteiner,
2018; Garcia Salas et al., 2011; Holtzman, 1981; Hudak & Quick, 2018; Lerdhal & Jackendoff, 1996;
McCormack, 1996; Quick & Hudak, 2013; Roads, 1979; Steedman, 1984) (see (Hopcroft et al., 2006)
for a general presentation of formal grammars). In the case of the Markov chain approach, the input is
a corpus of musical pieces. The algorithm essentially builds a Markov chain for the probabilities of a
note to be played according to some previous ones, and then, uses it to build randomly a new musical
piece which inherits in some sense from the inputted ones. The genetic algorithm approach is based
on a fitness function, a crucial object to evaluate the quality of the generated phrases and make sure
that, over the iterations, the output converges to a satisfying one. Neural networks produce potentially
very interesting results provided that an adequate learning phase is carried out. Nevertheless, the
inherent disadvantage of this method is that it is a black box whose internal mechanisms are difficult
to understand. It is therefore in most of the cases hard for the human composer using the computer as
a source of inspiration to slightly modify the generation parameters in order to direct the algorithm to
generate phrases of a certain kind. In the case of the formal grammar approach, the input data is a
formal grammar specifying the language of the possible results. The algorithm builds a musical piece



by performing a random generation of a word of the language specified by the grammar by selecting,
using various strategies, a rule of the grammar at random at each step.

The way in which such algorithms represent and manipulate musical data is crucial. Indeed, the data
structures used to represent musical phrases orient the nature of the operations we can define on
them. Operations that produce new phrases from old ones are an important ingredient in specifying
algorithms similar to those that manipulate formal grammars to randomly generate music. A possible
way for this purpose consists in giving at input some musical phrases and the algorithm creates a new
one by blending them through operations. Therefore, the willingness to endow the infinite set of the
musical phrases with operations in order to obtain suitable algebraic structures is a promising approach.
Such interactions between music and algebra form a fruitful field of investigation (Andreatta, 2018;
Hudak, 2004; Jedrzejewski, 2019; Tymoczko, 2011; Warrack, 1945). For instance, in (Hudak, 2004)
(see also (Hudak & Quick, 2018)), musical phrases are encoded as treelike structures wherein phrases
are associated by concatenation or by superposition. In (Morris, 1987), an abstraction of phrases
is proposed wherein pitch classes are used instead of absolute notes. In (Eibensteiner, 2018), a
phrase is a sequence of tuples containing data including a pitch, a duration, and a volume. Moreover,
(Cambouropoulos et al., 2001) reviews a wide range of other data structures.

In the present work, we propose to use tools coming from combinatorics and algebraic combinatorics
to represent musical phrases and operations on them, in order to introduce generative music algorithms
close to the family of those based on formal grammars. More precisely, we present the music box
model, a model to represent polyphonic phrases by combinatorial objects called multi-patterns. Here,
a “multi-pattern” (and its monophonic version, a “pattern”) should not be understood as, in the usual
way, a fragment of a piece admitting multiples occurrences of it. This terminology of multi-pattern
and pattern should be understood as follows: a multi-pattern is rather an abstraction of a non-fixed
musical phrase (that is, the same pattern can give rise to different musical phrases when it is seen
under different interpretations) which can be combined with others to form bigger phrases. The music
box model is designed to handle musical phrases written for the family of lamellophones. Instruments
of this family, like the kalimba, are capable of striking notes whose duration is determined by how
long they resonate, rather than being deliberately chosen. This is precisely the musical framework of
application of the tools designed in this work.

The infinite set of the multi-patterns admits the structure of an operad. This specific property is the
starting point of this work. Operads originate from algebraic topology (Boardman & Vogt, 1973; May,
1972) and are used nowadays also in algebraic combinatorics and in computer science (Giraudo, 2018;
Loday & Vallette, 2012; Méndez, 2015). Roughly speaking, in these structures, the elements are
operations with several inputs and one output, and the composition law mimics the usual composition
of such operators. Since the set of multi-patterns forms an operad, one can regard each multi-pattern
as an operation. The fallout of this is that each multi-pattern is, at the same time, a musical phrase
(under some interpretation) and an operation acting on musical phrases. In this way, our music
box model and its associated operad provide an algebraic and combinatorial framework to perform
computations on musical phrases. To the best of our knowledge, the present work is the first one to
build a bridge between operad theory and generative music.

The music box model and the constructed operads on multi-patterns admit direct applications to
design random generation algorithms since, as introduced by the author in (Giraudo, 2019), given an
operad there exist algorithms to generate some of its elements. These algorithms are based upon bud
generating systems, which are general formal grammars based on colored operads (Yau, 2016). In
the present work, we introduce three different variations of these algorithms to produce new musical
phrases from old ones. Each algorithm works more or less as follows. It takes as input a finite set
of multi-patterns and an integer value to influence the size of the output. It chooses iteratively a
multi-pattern from the initial collection in order to alter the current one by performing a composition
using the operad structure. As we shall explain, the initial multi-patterns are endowed with colors
in order to forbid certain compositions and, in this way, avoid specific musical intervals, particular
rhythmic motives, or impose a certain general structure. These colors play a similar role to the one of
nonterminal symbols of formal grammars. Even though this is feasible, these generation algorithms
are not intended to write complete musical pieces; rather, they aim to generate a new, longer, and
similar pattern from short primitive multi-patterns, potentially bringing new ideas to the human
composer. These algorithms can be used to generate phrases satisfying rules similar to the ones of
species counterpoint (see (Komosinski & Szachewicz, 2015) for the description of an automated
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composition method in this context), or to create a piece by emulating and mixing the style of some
input phrases.

This contribution presents some new interactions between music and mathematics, and a new
framework for automatic composition. Our method is not supposed to be better than the other existing
ones and has it is own advantages and disadvantages. As main features, the model allows us to
compute over musical phrases since, as mentioned before, each multi-pattern is in fact an operation
which admits as inputs other multi-patterns and produces a new multi-pattern. Such operations are
parameterizable by specifying how the scale degrees are transformed by providing a monoid structure
on the scale degrees (in other words, the operad of the multi-patterns is parameterized by a monoid).
A feature of the model is that we can express some musical transformations (like transpositions,
inversion, retrograde, etc.) either as multi-patterns seen like operations or through operad morphisms.
In all the cases, these operations are defined by the same language as the one used by the music box
model. Besides, according to what is intended, it is possible to specify different monoids in order to
change the behavior of the operations and also of the generated patterns. The other main features and
limitations of the model are discussed in more details further.

This text is organized as follows. Section 2 is devoted to present the music box model. Degree
patterns, rhythm patterns, patterns, and multi-patterns are defined. We explain how a multi-pattern
describes a musical phrase given an interpretation. We discuss also the strengths and the weaknesses
of this model. In Section 3, we begin by presenting a brief overview of operad theory and we build
step by step the music box operad. For this, we introduce first an operad on sequences of scale degrees
(depending as explained above on a monoid structure in order to encode how to compute on degrees),
an operad on rhythm patterns, and then an operad on monophonic patterns to finish with the operad
of multi-patterns. After providing some background on colored operads and bud generating systems,
three random generation algorithms for multi-patterns are introduced in Section 4. Section 5 provides
some concrete applications of the previous algorithms. We first describe an implementation (Giraudo,
2023) of the music box model (ready to use by the reader) and the related algorithms. Then, we
construct four particular bud generating systems, each with a specific objective. The paper ends by
presenting in Section 6 an evaluation of the generation algorithms. This evaluation is based on a
questionnaire aimed at experts, intended to understand how pieces generated by our methods are
received.

This paper is an extended version of (Giraudo, 2020) containing some new results (like the complete
study of the introduced operads) and their proofs. Moreover, we describe in this present version
a more general model than the one presented in the previous work: now, the scale degrees of the
multi-patterns are elements of a monoid.

General notations and conventions For any integers i and j, [i, j] denotes the set {i, i+1, . . . , j}.
For any integer i, [i] denotes the set [1, i]. A word is a finite sequence of elements. For any set A, A∗

is the set of the words on A. Given a word u, ℓ(u) is the length of u, and for any i ∈ [ℓ(u)], u(i) is
the i-th letter of u. For any i ≤ j ∈ [ℓ(u)], u(i, j) is the word u(i)u(i+ 1) . . . u(j). If a is a letter
and n is a nonnegative integer, an is the word consisting of n occurrences of a. In particular, a0 is the
empty word ϵ. If u and u′ are two words, their concatenation is the word denoted by u ■ u′ or simply
by uu′ when the context is clear.

2 The music box model

The purpose of this section is to introduce multi-patterns, the main combinatorial objects used in this
work to propose abstractions of musical phrases. This encoding of musical phrases forms the music
box model.

2.1 Patterns and multi-patterns

We introduce here degree patterns, rhythm patterns, patterns, and finally multi-patterns which are the
components of music box model, described in the next section.
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2.1.1 Degree patterns

A scale degree (or, for short, a degree) is any element of Z. Negative degrees are denoted by putting
a bar above their absolute value. For instance, the degree −3 is denoted by 3̄. A degree pattern is a
word d of degrees. The arity of d, also denoted by |d|, is the length of d as a word. For instance,
d := 01̄210 is a degree pattern of arity 5.

2.1.2 Rhythm patterns

A rhythm pattern r is a word on the alphabet { , }. The symbol is a rest and the symbol
is a beat. The length ℓ(r) of r is the length of r as a word and the arity |r| of r is its number of
occurrences of beats. The duration sequence of r is the unique word σ of nonnegative integers and of
length |r|+ 1 such that

r = σ(1) σ(2) . . . σ(|r|+1). (1)
For instance, r := is a rhythm pattern of length 7, arity 3, and of duration se-
quence 2101.

2.1.3 Patterns

A pattern is a pair p := (d, r) such that |d| = |r|. The arity |p| of p is the common arity of both d
and r, and the length ℓ(p) of p is the length ℓ(r) of r. For instance, p := (11̄2, ) is
a pattern of arity 3 and of length 7.

In order to handle concise notations, we shall write any pattern (d, r) as a word p on the alphabet
{ } ∪Z where the subword of p obtained by removing all occurrences of is the degree pattern d,
and the word obtained by replacing in p each integer by is the rhythm pattern r. For instance,

1 2̄ 12 (2)

is the concise notation for the pattern

(12̄12, ). (3)

By following this convention, in the sequel we shall see and treat any pattern p as a word on the
alphabet { } ∪ Z. Therefore, for any i ∈ [ℓ(p)], p(i) is the i-th letter of p which is either or a
degree. Remark that the length of p is the length of p as a word and that the arity of p is the number
of letters of Z it has.

2.1.4 Multi-patterns

A multi-pattern m is a word of length m ≥ 1 of patterns such that all patterns m(i), i ∈ [m], have
the same arity and the same length. The arity |m| of m is the common arity of all the m(i), the
length ℓ(m) of m is the common length of all the m(i), and the multiplicity m(m) of m is m. The
stacking of two multi-patterns m1 and m2 having the same arity and the same length (but possibly
different multiplicities), is the multi-pattern m1 ■m2. This multi-pattern has the same arity and length
as the ones of m1 and m2, and its multiplicity is m(m1) +m(m2).

A multi-pattern m is represented by a matrix of dimension m(m)×ℓ(m), where the i-th row contains
the pattern m(i) for any i ∈ [m(m)]. For any i ∈ [m(m)] and any j ∈ [ℓ(m)], m(i)(j) is hence the
letter p(j) where p is the pattern m(i). For instance,

m :=

∣∣∣∣ 0 1 1
2̄ 3̄ 0

∣∣∣∣ (4)

is a multi-pattern of multiplicity 2, having 3 as arity, and 5 as length. It satisfies m(1)(1) = 0,
m(1)(4) = , and m(2)(3) = 3̄.

In the sequel, for obvious reasons of practicality, we shall consider that a pattern is a multi-pattern of
multiplicity 1 and conversely.

2.2 Interpretations

Let us now explain how to convert multi-patterns into musical phrases. We introduce also the music
box model and discuss some of its drawbacks and advantages.
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2.2.1 From multi-patterns to musical phrases

Let N be any set of musical notes. A degree interpretation is a map ρ : Z → N . A rhythm
interpretation is a duration δ. An interpretation is a pair (ρ, δ) where ρ is a degree interpretation and
δ is a rhythm interpretation. The (ρ, δ)-interpretation of a pattern p is the musical phrase composed
of the sequence of rests and notes obtained by translating each rest of p as a rest and each degree
d of p as the note ρ(d), both lasting the duration prescribed by δ. The (ρ, δ)-interpretation of a
multi-pattern m is the musical phrase obtained by superimposing the (ρ, δ)-interpretations of each
pattern m(i), i ∈ [m(m)].

2.2.2 Standard interpretation

The standard interpretation is the interpretation (ρ, δ) where ρ sends the degree 2 to the “middle C”
and the other degrees accordingly with the diatonic scale (for instance, the degree 0 is interpreted
as the note A located three semitones below the middle C, the degree 9 is interpreted as the note C
located one octave above the middle C, and the degree 1̄ is interpreted as the note G located five
semitones below the middle C) and δ is the duration of 1

2 seconds.

For instance, the multi-pattern

m :=

∣∣∣∣∣ 0 1 2 1 1 2 3 2
2 3 4 3 3 4 5 4

7̄ 6̄ 5̄ 6̄ 6̄ 5̄ 4̄ 5̄

∣∣∣∣∣ (5)

is interpreted through the standard interpretation as the musical phrase

= 120

4
4

4
4

4
4

Unless otherwise stated, all the next multi-patterns of this paper are interpreted through the standard
interpretation.

2.2.3 Music box model

Due to the fact that multi-patterns evoke paper tapes of a programmable music box, we call the model
just described the music box model to represent musical phrases by multi-patterns within the context
of interpretations. Interpretations of this model are musical phrases that may be particularly suitable
to be played by the family of lamellophones (including the mbira and the kalimba) or keyboard
percussive instruments (including the marimba and the xylophone).

2.2.4 Limitations of the Music box model

Despite its simplicity, this model suffers from at least the following three main apparent limitations:

1. all patterns of a multi-pattern must have the same length;
2. all patterns of a multi-pattern must have the same arity;
3. the interpretation of a multi-pattern uses only rests and notes all having the same duration.

The first limitation, which requires that all patterns within a multi-pattern have the same length,
ensures that all patterns of a multi-pattern have the same total duration. This limitation can be lifted
by adding final rests to the shorter patterns within a multi-pattern so that they have virtually the same
length as the longest.

The second limitation, which requires that all patterns within a multi-pattern have the same arity, is a
particularity of our model and comes from algebraic reasons which will be clarified later in the text.
Here this limitation can be lifted by replacing, in a pattern with a smaller arity, some of its rests by
degrees of any other pattern of the multi-pattern. For instance, consider the phrase
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= 120

4
4

4
4

As it stands, no multi-pattern interprets into this phrase because the first voice is composed of six
quarter notes while the second of only two. Nevertheless, as we have just explained, the multi-pattern∣∣∣∣0 2 4 0 9 4

0 0 4 7̄ 0 4

∣∣∣∣ (6)

interprets as

= 120

4
4

4
4

and this phrase sounds like the previous one.

The last presented limitation, which restricts the interpretation of multi-patterns to rests and notes of
the same duration, can be lifted through different techniques. One approach is to make each note of
the interpretation of a multi-pattern continue to sound until the next note of the same pattern begins.
This means for instance that if a degree is followed by three rests, this degree and the three rests
are interpreted as a note of duration 1 + 3 times the duration prescribed by δ, where δ is a rhythm
interpretation. A more sophisticated solution involves using a map τ : N \ {0} → N2 that assigns any
α ∈ N \ {0} to a pair (α1, α2) where α = α1 + α2. This approach interprets any degree followed by
α− 1 rests as a note lasting α1 times the duration prescribed by δ and then a rest lasting α2 times
the duration prescribed by δ, where τ(α) = (α1, α2). For instance, by considering such a map τ
satisfying τ(1) = (1, 0), τ(2) = (1, 1), τ(3) = (2, 1), and τ(4) = (4, 0), the multi-pattern∣∣∣∣2 1 0 0

4 2 2 7

∣∣∣∣ (7)

is interpreted through the standard interpretation as the musical phrase

= 120

4
4

4
4

2.2.5 Strengths of the music box model

Let us now discuss some of the main strengths of the music box model. Multi-patterns have the
following features:

1. the translation of multi-patterns to musical phrases through interpretations is almost trans-
parent and is flexible;

2. more than just representing musical phrases, multi-patterns are in fact operations on musical
phrases.

First point is obvious: with a little training, and with an interpretation in mind, it is easy to imagine
how a multi-pattern sounds. Moreover, this representation is flexible in the sense that a multi-pattern
does not specify a fixed sequence of rests and notes but rather a scheme (whence the appellation of
“pattern” and “multi-pattern”). For instance, the pattern |0 2 4 2 4| interprets as a minor arpeggio in
the standard interpretation but interprets also as a major arpeggio in any major scale, among other
possibilities.
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The second point will be clarified in the sequel. It basically says that multi-patterns are not limited
to simply representing musical phrases since they are in fact operations on musical phrases. This
feature is perhaps for us the most compelling aspect of the model as it allows for the construction of
larger multi-patterns by using a natural notion of composition. As we shall see, this composition is
also highly flexible, as it can be parameterized according to the specific needs and desired musical
outcomes.

3 Operad structures

The purpose of this section is to introduce an operad structure on multi-patterns, called music box
operad. The main interest of endowing the set of multi-patterns with the structure of an operad is that
this leads to an algebraic framework to perform parameterizable computations on musical phrases.

3.1 A primer on operads

We begin by setting here the elementary notions of operad theory used in the sequel. Most of them
come from (Giraudo, 2018).

3.1.1 Graded sets

A graded set is a set O decomposing as a disjoint union

O :=
⊔
n∈N
O(n), (8)

where the O(n), n ∈ N, are sets. For any x ∈ O, there is by definition a unique n ∈ N such that
x ∈ O(n). This integer n is the arity of x and is denoted by |x|. Let O′ be a second graded set. A
map ϕ : O → O′ is a graded set morphism if for any x ∈ O, ϕ(x) ∈ O′(|x|). The identity graded
set morphism is denoted by I. Besides, O′ is a graded subset of O if O′(n) ⊆ O(n) for any n ∈ N.

The Hadamard product of two graded sets O and O′ is the graded set O ⊠ O′ defined, for any
n ∈ N, by (O ⊠O′)(n) := O(n) × O′(n). Observe that if O′′ is another graded set, the graded
sets (O ⊠O′)⊠O′′ and O ⊠ (O′ ⊠O′′) are isomorphic, so that ⊠ is an associative operation. By
a slight abuse of notation, for any other graded sets O1 and O′

1, and any graded set morphisms
ϕ : O → O1 and ϕ′ : O′ → O′

1, we denote by ϕ⊠ ϕ′ the map from O⊠O′ to O1 ⊠O′
1 defined, for

any (x, x′) ∈ O ⊠O′, by (ϕ⊠ ϕ′)((x, x′)) := (ϕ(x), ϕ′(x′)). This map is a graded set morphism.

3.1.2 Nonsymmetric operads

A nonsymmetric operad, or an operad for short, is a triple (O, ◦i,1) such that O is a graded set, ◦i is
a map

◦i : O(n)×O(m)→ O(n+m− 1), 1 ≤ i ≤ n, (9)

called partial composition map, and 1 is a distinguished element of O(1), called unit. This data has
to satisfy, for any x, y, z ∈ O, the three relations

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z), 1 ≤ i ≤ |x|, 1 ≤ j ≤ |y|, (10a)

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y, 1 ≤ i < j ≤ |x|, (10b)

1 ◦1 x = x = x ◦i 1, 1 ≤ i ≤ |x|. (10c)

3.1.3 Abstract operators and intuition

From an intuitive point of view, an operad is an algebraic structure wherein each element x can be
seen as an operator having |x| inputs and one output. Such an operator is depicted as

x

1 |x|. . .

(11)
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where the inputs are at the bottom and numbered from 1 to |x|, and the output is at the top. Given
two operations x and y of O, the partial composition x ◦i y is a new operator obtained by composing
y onto the i-th input of x. Pictorially, this partial composition expresses as

x

1 |x|i. . . . . .

◦i y

1 |y|. . .

=

x

1 |x| + |y| − 1. . . . . .y

i i + |y| − 1. . .

. (12)

Relations (10a), (10b), and (10c) become clear when they are interpreted into this context of abstract
operators and rooted trees (also called syntax trees).

In a complementary manner, an interesting way to see the elements of an operad O consists in
regarding any x ∈ O(n), n ∈ N, as a combinatorial object with n substitute sectors labeled from 1 to
n. The partial composition x ◦i y consists in replacing the substitute sector of x having i as label by
y and by shifting the labels accordingly. For instance, here is a schematic composition of an element
of arity 3 at the 2-nd position inside an element of arity 5:

1 2

3
4

5

◦2
1

2
3

=
1

1
2

3

3

4

5

=
1

2
3

4

5

6

7

.

In the context of this work, the combinatorial objects on which an operad structure will be defined are
the multi-patterns. The substitute sectors of a multi-pattern m are its degrees, from the first labeled
by 1 to the last labeled by n, where n is the arity of m. Of course, this operad will be presented in
detail in the following.

The operad axioms can be understood on multi-patterns in the following way (even if at this stage,
the operad structure on these objects has not yet been defined). Relation (10a) says that, given three
multi-patterns m1, m2, and m3, composing m2 into m1 and then, m3 into the area occupied by m2

of the obtained multi-pattern is the same as composing m3 into m2 and then, the obtained multi-
pattern into m1. Relation (10b) says that, given three multi-patterns m1, m2, and m3, composing
m2 into m1 and then m3 to the right of the area occupied by m2 of the obtained multi-pattern is the
same as composing m3 into m1 and then, m3 to the left of the area occupied by m2 of the obtained
multi-pattern. Finally, Relation (10c) says simply that there exists a multi-pattern playing the role of
a unit element. These relations are the right ones to be in position to see multi-patterns as operations
and to compose them as such.

3.1.4 Elementary definitions

Let (O, ◦i,1) be an operad. The full composition map of O is the map

◦ : O(n)×O(m1)× · · · × O(mn)→ O(m1 + · · ·+mn) (13)

defined for any x ∈ O(n) and y1, . . . , yn ∈ O by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . .) ◦1 y1. (14)

Intuitively, x ◦ [y1, . . . , yn] is obtained by grafting simultaneously the outputs of all the yi onto the
i-th inputs of x. Additionally, the homogeneous composition map of O is the map

⊙ : O(n)×O(m)→ O(nm), (15)

defined, for any x ∈ O(n) and y ∈ O(m) by

x⊙ y := x ◦ [y, . . . , y]︸ ︷︷ ︸
n elements

. (16)
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Let (O′, ◦′i,1′) be a second operad. A graded set morphism ϕ : O → O′ is an operad morphism if
ϕ(1) = 1′ and for any x, y ∈ O and i ∈ [|x|],

ϕ(x ◦i y) = ϕ(x) ◦′i ϕ(y). (17)

If instead (17) holds by replacing the second occurrence of i by |x| − i + 1, then ϕ is an operad
antimorphism. We say that O′ is a suboperad of O if O′ is a graded subset of O, 1 = 1′, and for any
x, y ∈ O′ and i ∈ [|x|], x ◦i y = x ◦′i y. For any subset G of O, the operad generated by G is the
smallest suboperad OG of O containing G. When OG = O and G is minimal with respect to the
inclusion among the subsets of G satisfying this property, G is a minimal generating set of O and its
elements are generators of O.

The Hadamard product of O and O′ is the graded set O ⊠O′ endowed with the partial composition
map ◦′′i defined, for any (x, x′), (y, y′) ∈ O ⊠O′ and i ∈ [|(x, x′)|], by

(x, x′) ◦′′i (y, y′) := (x ◦i y, x′ ◦′i y′), (18)

and having (1,1′) as unit. This graded set O ⊠O′ is an operad. Moreover, for any other operads
O1 and O′

1, and any operads morphisms (resp. antimorphisms) ϕ : O → O1 and ϕ′ : O′ → O′
1,

the graded set morphism ϕ⊠ ϕ′ is also an operad morphism (resp. antimorphism) from O ⊠O′ to
O1 ⊠O′

1.

3.2 Music box operads

We build operads on multi-patterns step by step by introducing operads on degree patterns and an
operad on rhythm patterns. The operads of patterns are constructed as the Hadamard product of
the two previous ones. Finally, the operads of multi-patterns are suboperads of iterated Hadamard
products of operads of patterns with themselves. These operads (except the operad of rhythm patterns)
depend on a monoid structure on Z in order to encode how to compute on degrees.

3.2.1 Operads of degree patterns

The construction of an operad on degree patterns is based upon the construction T, a construction
from monoids to operads introduced in (Giraudo, 2015) which we recall now. Given a monoid
(M, ⋆, e), where ⋆ is an associative operation admitting e as unit, let T(M) be the graded set of the
words onM, where the arity of a word is its length. Let ⋆ :M× T(M) → T(M) be the map
defined for any a ∈M and u ∈ T(M) by

a ⋆ u := a ⋆ u(1) ■ · · · ■ a ⋆ u(ℓ(u)). (19)

The graded set T(M) is endowed with a partial composition map ◦i, defined for any u, u′ ∈ T(M)
and i ∈ [|u|], by

u ◦i u′ := u(1, i− 1) ■ u(i) ⋆ u′
■ u(i+ 1, ℓ(u)). (20)

It is shown in (Giraudo, 2015) that (T(M), ◦i,1), where 1 is the element e of T(M)(1), is an
operad. To be perfectly precise, in (Giraudo, 2015), the presented construction is so that in T(M)
there is no element of arity 0. We consider here the same construction with the difference that
T(M)(0) is the singleton {ϵ}. This is justified in the present work because we wish to manipulate
degree patterns of arity 0.

Besides, by extending some results of (Giraudo, 2015), it is possible to show that T(M) admits as a
minimal generating set the set

{ϵ, ee} ∪GM (21)
where GM is a minimal generating set ofM as a monoid. Besides, ifM′ is another monoid and
ϕ :M → M′ is a monoid morphism, let T(ϕ) : T(M) → T(M′) be the map defined, for any
u ∈ T(M), by

T(ϕ)(u) := ϕ(u(1)) ■ · · · ■ ϕ(u(ℓ(u))). (22)
It is also shown in (Giraudo, 2015) that T(ϕ) is an operad morphism preserving injections and
surjections.

Let mir : T(M)→ T(M) be the map defined, for any u ∈ T(M), by

mir(u) := u(ℓ(u)) ■ · · · ■ u(1). (23)

The word mir(u) is the mirror of u.
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Proposition 3.1. For any monoidM, the map mir is an operad anti-automorphism of T(M).

Proof. This is a straightforward verification based upon the fact that for any u ∈ T(M), the i-th
letter of mir(u) is u(ℓ(u)− i+ 1).

A degree monoid is any monoid (D, ⋆, e) such that D ⊆ Z. By construction, for any n ∈ N, each
d ∈ T(D)(n) is a sequence of integers of length n, and thus d is a degree pattern of arity n. For
this reason, T(D) is an operad having as underlying graded set the graded set of the degree patterns
having elements of D as degrees. We denote by

DPD := T(D) (24)

this operad, called D-degree pattern operad.

Let us consider three important examples depending on different natural degree monoids.

1. By denoting by Z the additive monoid (Z,+, 0), DPZ contains all degree patterns. In DPZ,
we have

1̄013̄2 ◦4 211 = 1̄01(−3 + 2)(−3 + 1)(−3 + 1)2 = 1̄011̄2̄2̄2. (25)

Moreover, since Z admits {−1, 1} as a minimal generating set, the operad DPZ admits
{ϵ, 1̄, 1, 00} as a minimal generating set.

2. By denoting, for any k ≥ 1, by Ck the cyclic monoid (Z/kZ,+, 0), DPCk contains the
degree patterns having degrees between 0 and k − 1. In DPC3 we have

20101 ◦3 2120 = 20020101. (26)

Moreover, since Ck admits {1} as a minimal generating set, the operad DPCk admits
{ϵ, 1, 00} as a minimal generating set.

3. By denoting, for any subset Z of Z having a lower bound z, by MZ the monoid (Z,max, z),
DPMZ contains all degree patterns having degrees in Z. In DPM[0,2] we have

20010 ◦4 2120 = 20021210. (27)

Moreover, since MZ admits Z \ {z} as a minimal generating set, the operad DPMZ admits
{ϵ} ∪ (Z \ {z}) ∪ {00} as a minimal generating set.

By Proposition 3.1, for any degree monoid D, the map mir : DPD → DPD is an operad anti-
automorphism. Moreover, we can consider on the operads DPZ, DPCk , and DPMZ the following
other morphisms.

1. For any α ∈ Z, let mulα : DPZ → DPZ be the map defined by mulα := T(ϕ) where ϕ is
the monoid morphism satisfying ϕ(d) = αd for any d ∈ Z. For instance,

mul−2(12̄003) = 2̄4006̄. (28)

Since ϕ is a monoid morphism, mulα is an operad endomorphism. Moreover, when α ̸= 0,
mulα is injective, and when α ∈ {−1, 1}, mulα is bijective.

2. For any k ≥ 1, let also redk : DPZ → DPCk be the map defined by redk := T(ϕ) where ϕ
is the monoid morphism satisfying ϕ(d) = d mod k for any d ∈ Z. For instance,

red3(12̄003) = 11000. (29)

Since ϕ is a surjective monoid morphism, redα is a surjective operad morphism.
3. For any subsets Z and Z ′ of Z having respective lower bounds z and z′, a map θ : Z → Z ′

is a rooted weakly increasing map if θ(z) = z′ and, for any d, d′ ∈ Z, d ≤ d′ implies
θ(d) ≤ θ(d′). If θ is such a map, let incrθ : DPMZ → DPM′

Z be the map defined by
incrθ := T(θ). For instance, for Z := [0, 3] and Z ′ := [2, 5], and θ satisfying θ(d) = d+2
for any d ∈ Z,

incrθ(12003) = 34225. (30)
Since θ is a monoid morphism, incrθ is an operad morphism. This morphism is not
necessarily injective nor surjective.
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3.2.2 Operad of rhythm patterns

Let us introduce a new construction from monoids to operads, similar to the construction T recalled
in Section 3.2.1. Given a monoid (M, ⋆, e), let U(M) be the graded set of the nonempty words
on M, where the arity of a word is its length minus 1. Let ←−⋆ : M × U(M) → U(M) and−→⋆ : U(M)×M→ U(M) be the maps defined for any a ∈M and u ∈ U(M) by

a←−⋆ u := a ⋆ u(1) ■ u(2, ℓ(u)) (31)

and
u−→⋆ a := u(1, ℓ(u)− 1) ■ u(ℓ(u)) ⋆ a. (32)

The graded set U(M) is endowed with a partial composition map ◦i, defined for any u, u′ ∈ U(M)
and i ∈ [|u|], by

u ◦i u′ := u(1, i− 1) ■ u(i)←−⋆ u′−→⋆ u(i+ 1) ■ u(i+ 2, ℓ(u)). (33)

Note that the associativity of ⋆ ensures that (33) is well-defined in particular when ℓ(u′) = 1. Let us
also denote by 1 the element ee of U(M)(1). Moreover, ifM′ is another monoid and ϕ :M→M′

is a monoid morphism, let U(ϕ) : U(M)→ U(M′) be the map defined, for any u ∈ U(M), by

U(ϕ)(u) := ϕ(u(1)) ■ · · · ■ ϕ(u(ℓ(u))). (34)

Proposition 3.2. For any monoidM, U(M) is an operad. Moreover, for any monoidsM andM′,
and any monoid morphism ϕ :M→M′, U(ϕ) is an operad morphism.

Proof. By using the fact that the product of M is associative and that M has a unit, it follows
by a straightforward but technical verification that Relations (10a), (10b), and (10c) are satisfied.
Finally, the fact that ϕ is a monoid morphism says that ϕ commutes with the product ofM. As a
straightforward computation shows, this implies that U(ϕ) is an operad morphism.

Let mir : U(M)→ U(M) be the map defined, for any u ∈ U(M), by

mir(u) := u(ℓ(u)) ■ · · · ■ u(1). (35)

The word mir(u) is the mirror of u.
Proposition 3.3. For any commutative monoidM, the map mir is an operad anti-automorphism
of U(M).

Proof. This is a straightforward verification based upon the fact that for any u ∈ U(M), the i-th
letter of mir(u) is u(ℓ(u)− i+ 1). The commutativity ofM is important here.

By Proposition 3.2,
RP := U(N) (36)

where N is the additive monoid (N,+, 0) is an operad. By construction, for any n ∈ N, each
σ ∈ RP(n) is a sequence of nonnegative integers of length n+ 1, and thus, σ is a duration sequence
of a rhythm pattern of arity n (see Section 2.1.2). For this reason, RP can be seen as an operad having
as underlying graded set the graded set of the rhythm patterns. This operad is the rhythm pattern
operad. We have for instance,

00121 ◦3 110 = 002121, (37a)
110 ◦1 12 = 230, (37b)
211 ◦1 2 = 51. (37c)

Directly on rhythm patterns, the partial composition rephrases as follows. For any rhythm patterns r
and r′, and any integer i ∈ [|r|], r ◦i r′ is obtained by replacing the i-th occurrence of in r by r′.
For instance, on rhythm patterns, (37a), (37b), and (37c) translate respectively as

◦3 = , (38a)

◦1 = , (38b)
◦1 = . (38c)

Proposition 3.4. The operad RP admits {ϵ, , } as a minimal generating set.
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Proof. Let us denote by G the candidate minimal generating set for RP described in the statement of
the proposition. Any rhythm pattern r ∈ RP such that ℓ(r) ≥ 2 decomposes as

r = ( ◦1 · · · ◦1 )︸ ︷︷ ︸
ℓ(r)−1 terms

◦[r(1), . . . , r(ℓ(r))]. (39)

Since for any i ∈ [ℓ(r)], r(i) ∈ { , } and is the unit of RP and belongs to G, r is an element
of RPG. Additionally, all rhythm patterns of lengths 0 or 1 belong to RPG because ϵ ∈ G, ∈ G,
and is the unit of RP. This shows that G is a generating set of RP. Finally, this generating set
is minimal since no element of G can be expressed by partial compositions of some different other
ones.

For the next lemma, recall that when r is a rhythm pattern, ℓ(r) is the length of r and this quantity is
the number of occurrences of plus the number of occurrences in r.

Lemma 3.1. For any two rhythm patterns r and r′, and i ∈ [|r|], in the operad RP, ℓ(r ◦i r′) =
ℓ(r) + ℓ(r′)− 1.

Proof. This is a direct consequence of the interpretation of the partial composition of RP in terms of
rhythm patterns: the rhythm pattern r ◦i r′ is obtained by replacing a of r by r′.

By Proposition 3.3, since N is a commutative monoid, the map mir : RP → RP is an operad
anti-automorphism. On rhythm patterns, given r ∈ RP, mir(r) is the rhythm pattern obtained by
reading r from right to left. For instance,

mir( ) = . (40)

For any β ∈ N, let dilβ : RP→ RP be the map defined by dilβ := U(ϕ) where ϕ is the monoid mor-
phism satisfying ϕ(s) = βs for any s ∈ N. Since ϕ is a monoid morphism of N, by Proposition 3.3,
dilβ is an operad endomorphism. When β ̸= 0, dilβ is injective and dilβ is surjective if and only if
β = 1. Interpreted on rhythm patterns, dilβ(r) is obtained by replacing each occurrence of in r by

β . For instance,
dil2( ) = , (41a)

dil0( ) = . (41b)

3.2.3 Operads of patterns

For any degree monoid (D, ⋆, e), let PD be the operad defined as

PD := DPD ⊠ RP. (42)

By construction, for any n ∈ N, each p ∈ PD(n) is a pair (d, r) such that d is a degree pattern of
arity n having elements of D as degrees and r is a rhythm pattern of arity n. For this reason, PD is
an operad having as underlying graded set the graded set of the patterns having elements of D as
degrees. We call PD the D-pattern operad. In PZ, we have for instance

(2̄31, ) ◦2 (01̄, ) = (2̄321, ), (43a)

(112, ) ◦1 (1̄, ) = (012, ). (43b)

Directly by using the concise notation for patterns described in Section 2.1.3, the partial composition
rephrases as follows. For any patterns p and p′, and any integer i ∈ [|p|], p ◦i p′ is obtained by
replacing the i-th degree d of p by p′′ where p′′ is the pattern obtained by replacing each degree d′

of p′ by d ⋆ d′. For instance, by using the concise notation for patterns, (43a) and (43b) translate as

2̄3 1 ◦2 0 1̄ = 2̄3 2 1, (44a)

1 1 2 ◦1 1̄ = 0 1 2. (44b)

Proposition 3.5. Let (D, ⋆, e) be a degree monoid admitting GD as a minimal generating set. The
operad PD admits {ϵ, , ee} ∪GD as a minimal generating set.
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Proof. Let us denote by G the candidate minimal generating set for PD described in the statement of
the proposition. Any pattern p ∈ PD such that ℓ(p) ≥ 2 decomposes as

p = (ee ◦1 · · · ◦1 ee)︸ ︷︷ ︸
ℓ(p)−1 terms

◦[p(1), . . . ,p(ℓ(p))]. (45)

By definition of patterns, for any i ∈ [n], p(i) is either or an element of D. Therefore, since G
contains GD, each p(i) which is an element of D can be expressed by composing some elements
of GD. Since moreover belongs to G, this shows that p is an element of PDG. Additionally, all
patterns of length 0 or 1 belong to PDG because ϵ ∈ G, ∈ G, and since GD is a generating set of
D, each pattern d ∈ D of length 1 belongs to PDG. Therefore, G is a generating set of PD. Finally,
this generating set is minimal since no element of G can be expressed by partial compositions of
some different other ones.

By Proposition 3.5,

1. the operad PZ admits {ϵ, , 1̄, 1, 00} as a minimal generating set;

2. for any k ≥ 1, the operad PCk , admits {ϵ, , 1, 00} as a minimal generating set;

3. for any subset Z of Z having a lower bound z, PMZ admits {ϵ, , zz} ∪ (Z \ {z}) as a
minimal generating set.

Due to the construction of PD as the Hadamard product of DPD and RP, by Propositions 3.1 and 3.3,
the map mir⊠mir is an operad anti-automorphism of PD. Moreover, again due to the construction
of PD and the existence of the operad morphisms involving DPD and RP presented in Sections 3.2.1
and 3.2.2, one can consider on the operads PZ, PCk , and PMZ the following morphisms.

1. For any α ∈ Z, the map mulα ⊠ I is an operad endomorphism of PZ.

2. For any k ≥ 1, the map redk ⊠ I is an operad morphism from PZ to PCk .

3. For any subsets Z and Z ′ of Z having lower bounds and any rooted weakly increasing map
θ : Z → Z ′, the map incrθ ⊠ I is an operad morphism from PMZ to PMZ′ .

4. For any degree monoid D and β ∈ N, the map I⊠ dilβ is an operad endomorphism of PD.

Let us describe some morphisms involving the operad PD and the previous operads DPD and RP.
Let the map dpD : DPD → PD be defined, for any d ∈ DPD by

dpD(d) :=
(
d, |d|

)
. (46)

This map is an injective operad morphism. Let also the map rpD : RP → PD be defined, for any
r ∈ RP by

rpD(r) :=
(
e|r|, r

)
, (47)

where e is the unit of D. This map is an injective operad morphism.

3.2.4 Operads of multi-patterns

For any degree monoid D and any positive integer m, let PD
m

′ be the operad defined as

PD
m

′
:= PD ⊠ · · ·⊠ PD︸ ︷︷ ︸

m terms

. (48)

By definition of the Hadamard product of graded sets, the elements of PD
m

′ are m-tuples (or, equiva-
lently, words of length m) of patterns. Let also PD

m be the graded subset of the underlying graded set
of PD

m
′ restrained to the m-tuples of patterns having all an equal length.

Theorem 3.1. For any degree monoid D and any positive integer m, PD
m is an operad.
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Proof. We have to prove that the set PD
m forms a suboperad of P′

m. Let us denote by e the unit of D.
Since e is also the unit of the operad PD, the m-tuple (e, . . . , e) belongs to PD

m(1) and is the unit of
PD
m. Moreover, by Lemma 3.1, given two patterns p and p′, for any i ∈ [|p|], the length of p ◦i p′ is

ℓ(p) + ℓ(p′)− 1. This shows that all patterns of the multi-pattern resulting of a partial composition
of two multi-patterns have the same length. This implies that the partial composition of two elements
of PD

m is also in PD
m and hence, that PD

m is an operad.

By construction, for any n ∈ N, each m ∈ PD
m(n) is an m-tuple of patterns all having n as arity, all

having elements of D as degrees, and all having the same length. For this reason, PD
m is an operad

having as underlying graded set the graded set of the multi-patterns of multiplicity m and having
elements of D as degrees. By Theorem 3.1, PD

m is an operad, and we call it the D-music box operad
of multiplicity m. This construction of PD

m explains why all the patterns of a multi-pattern must have
the same arity. This is a consequence of the general definition of the Hadamard product of operads.

By using the matrix notation for multi-patterns described in Section 2.1.4, we have for instance
respectively in PZ

2 and in PZ
3 ,∣∣∣∣ 2̄ 1̄ 0
0 1 1

∣∣∣∣ ◦2 ∣∣∣∣13̄
∣∣∣∣ = ∣∣∣∣ 2̄ 0 0

0 2̄ 1

∣∣∣∣ , (49a)∣∣∣∣∣0 0
2 0
4 4

∣∣∣∣∣ ◦2
∣∣∣∣∣7 7
0 0
7̄ 7̄

∣∣∣∣∣ =
∣∣∣∣∣0 7 7
2 0 0
4 3̄ 3̄

∣∣∣∣∣ . (49b)

Due to the construction of PD
m as a suboperad of an operad obtained by an iterated Hadamard product

of Pm and to the fact that, as explained in Section 3.2.3, mir⊠mir is an anti-automorphism of P, the
map

mir := (mir⊠mir)⊠ · · ·⊠ (mir⊠mir)︸ ︷︷ ︸
m terms

(50)

is an operad anti-automorphism of PD
m. Moreover, again due to the construction of PD

m and the operad
endomorphisms of PD presented in Section 3.2.3, one can consider on the operads PZ

m, PCk
m , and

PMZ
m the following morphisms.

1. For any α1, . . . , αm ∈ Z, the map

mulα1,...,αm
:= (mulα1

⊠ I)⊠ · · ·⊠ (mulαm
⊠ I) (51)

is an operad endomorphism of PZ
m.

2. For any k ≥ 1, the map

redk := (redk ⊠ I)⊠ · · ·⊠ (redk ⊠ I)︸ ︷︷ ︸
m terms

(52)

is an operad morphism from PZ
m to PCk

m .
3. For any subsets Z and Z ′ of Z having lower bounds and any rooted weakly increasing maps

θi : Z → Z ′, i ∈ [m], the map

incrθ1,...,θm := (incrθ1 ⊠ I)⊠ · · ·⊠ (incrθm ⊠ I) (53)

is an operad morphism from PMZ
m to P

MZ′
m .

4. For any degree monoid D and β ∈ N,

dilβ := (I⊠ dilβ)⊠ · · ·⊠ (I⊠ dilβ)︸ ︷︷ ︸
m terms

(54)

is an operad endomorphism of PD
m.

Let also, for any m ≥ 1, the map cpm : PD → PD
m be defined, for any p ∈ PD, by

cpm(p) := p ■ · · · ■ p︸ ︷︷ ︸
m elements

. (55)

14



In other words, cpm(p) is the multi-pattern obtained by stacking the pattern p with itself m times.
This map is an injective operad morphism.

The full diagram involving the operads DPD, RP, PD, and PD
m is

DPD RPPD = PD
1

PD
m

dpD rpD

cpm (56)

where D is a degree monoid, m ≥ 1, and the arrows are injective operad morphisms.

3.3 Operations on musical phrases

Thanks to the D-music box operads and more precisely, to the operad structures on multi-patterns,
we can see any multi-pattern as an operator acting on multi-patterns. At the level of interpretations, a
multi-pattern is hence an operator acting on musical phrases. We first describe an application of the
D-music box operads to decompose multi-patterns in smaller pieces, then introduce a nomenclature
for some special multi-patterns, and finish by explaining how to express some natural transformations
on musical phrases in the language of the D-music box operads.

3.3.1 Decomposing multi-patterns

Instead of using the operads PD
m to build multi-patterns, we can use these structures in the opposite

way to decompose multi-patterns into smaller pieces. Indeed, an operad structure allows us to
factorize its elements by means of treelike structures (see Section 3.1.3). More precisely, given a
graded subset S of PD

m and m ∈ PD
m, an S-decomposition of m is a planar rooted tree t having all

internal nodes decorated by elements of S and such that the evaluation (as a syntax tree) of t is m.

For instance, the pattern p := 11̄1̄2 1 decomposes in PZ
1 = PZ as the tree

0

1

1

1

00

0

0

00

1̄

00

1̄

00

. (57)

This is a G-decomposition of p where G is the on the minimal generating set of PZ described in
Section 3.2.3. Besides, the multi-pattern

m :=

∣∣∣∣ 0 0 1 2̄
0 0 0 3

∣∣∣∣ (58)

admits in PZ
2 the PZ

2 -decomposition

∣∣∣∣∣0 0
0 0

∣∣∣∣∣
∣∣∣∣∣ 0
0

∣∣∣∣∣

∣∣∣∣∣ 0 0

∣∣∣∣∣

∣∣∣∣∣0 0
0 0

∣∣∣∣∣

∣∣∣∣∣10
∣∣∣∣∣

∣∣∣∣∣0 2̄
0 3

∣∣∣∣∣ . (59)
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At the musical level, this notion of decomposition is related to the parsing of musical phrases (see
also (Lerdhal & Jackendoff, 1996)). Understanding the G-decompositions of a multi-pattern m,
where G is a minimal generating set of PD

m, brings information about the structure of m, including its
repetitions, its self-similarities, and its symmetries. It is possible to develop, within this framework
of the bud music box model, a notion of complexity for multi-patterns by studying the different
G-decompositions a multi-pattern has.

Nevertheless, the description of minimal generating sets for PD
m when m ≥ 2 seems to be much more

intricate than for PD
1 and the previous operads (than for DPD and for RP). For the time being, we

do not have good and usable descriptions. Therefore, we do not have an effective way to propose
G-decompositions of multi-patterns of multiplicity greater than 1 for the time being where G is a
minimal generating set of PD

m when m ≥ 2.

3.3.2 Particular multi-patterns

We define here some multi-patterns that play special roles.

1. Chords. A multi-pattern m is a chord if m(m) ≥ 2, |m| = 1, and ℓ(m) = 1. For instance,∣∣∣∣∣∣∣
7̄
0
2
4

∣∣∣∣∣∣∣ (60)

is a chord.
2. Flat multi-patterns. A multi-pattern m is flat if all degrees of its patterns m(i), i ∈ [m(m)],

are 0. For instance, ∣∣∣∣∣ 0 0
0 0

0 0

∣∣∣∣∣ (61)

is flat.
3. Arpeggio shapes. A multi-pattern m is an arpeggio shape if m is flat, m(m) ≥ 2, |m| = 1,

and, for any i, i′ ∈ [m(m)] and j ∈ [ℓ(m)], m(i)(j) ̸= ̸= m(i′)(j) implies i = i′. For
instance, ∣∣∣∣∣∣∣

0
0

0
0

∣∣∣∣∣∣∣ (62)

is an arpeggio shape.
4. Arpeggios. A multi-pattern m is an arpeggio if m writes as m′ ⊙m′′ where m′ is a chord

of multiplicity m, m′′ is an arpeggio shape of multiplicity m, and ⊙ is the homogeneous
composition of the operad PZ

m. For instance, since∣∣∣∣∣∣∣
7̄

0
2

4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
7̄
0
2
4

∣∣∣∣∣∣∣⊙
∣∣∣∣∣∣∣

0
0

0
0

∣∣∣∣∣∣∣ , (63)

the multi-pattern on left-hand side is an arpeggio.

3.3.3 Operations

Let us describe here some transformations on musical phrases by using the operad PZ
m and the related

operad morphisms.

1. Mimesis. For any multi-patterns m and m′ of the same multiplicity, m⊙m′ is the mimesis
of m according to m′. For instance

|1̄ 1| ⊙ |0 2 4 | = |1̄ 1 3 1 3 5 | . (64)

Observe that since

|0 2 4 | ⊙ |1̄ 1| = |1̄ 1 1 3 3 5 | , (65)
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this operation is not commutative. Moreover, when m is a chord and m′ is an arpeggio
shape, the mimesis of m according to m′ is by definition an arpeggio. For instance,∣∣∣∣∣∣∣

7̄
0
2
4

∣∣∣∣∣∣∣⊙
∣∣∣∣∣∣∣

0
0

0
0

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

7̄
0

2
4

∣∣∣∣∣∣∣ . (66)

2. Concatenation. For any two multi-patterns m and m′ of the same multiplicity m,

conc(m,m′) := cpm(00) ◦ [m,m′] (67)

is the concatenation of m and m′. For instance,

conc

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣ , ∣∣∣∣0 0 1
1̄ 1̄ 3

∣∣∣∣) =

∣∣∣∣ 2̄ 1 0 0 1
2 3 1̄ 1̄ 3

∣∣∣∣ . (68)

3. Repetition. For any multi-pattern m of multiplicity m and any k ≥ 1,

repk(m) := cpm
(
0k
)
⊙m (69)

is the k-fold repetition of m. For instance,

rep3

(∣∣∣∣0 0 1
1̄ 1̄ 3

∣∣∣∣) =

∣∣∣∣0 0 1 0 0 1 0 0 1
1̄ 1̄ 3 1̄ 1̄ 3 1̄ 1̄ 3

∣∣∣∣ . (70)

4. Transposition. For any multi-pattern m of multiplicity m and any d ∈ Z,

trand(m) := cpm(d)⊙m (71)

is the transposition of m by d degrees. For instance,

tran−2

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣) =

∣∣∣∣ 4̄ 1̄
0 1

∣∣∣∣ . (72)

5. Temporization. For any multi-pattern m of multiplicity m and any k ≥ 0,

tempk(m) := m⊙ cpm
(
0 k

)
(73)

is the temporization of m by k units of time. For instance,

temp2

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣) =

∣∣∣∣ 2̄ 1
2 3

∣∣∣∣ . (74)

6. Inverse. For any multi-pattern m,

inv(m) := mul−1,...,−1(m) (75)

is the inverse of m. For instance,

inv

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣) =

∣∣∣∣ 2 1̄
2̄ 3̄

∣∣∣∣ . (76)

7. Retrograde. For any multi-pattern m, mir(m) is the retrograde of m. For instance,

mir

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣) =

∣∣∣∣ 1 2̄
3 2

∣∣∣∣ . (77)

8. Retrograde inverse. For any multi-pattern m,

minv(m) := mir(inv(m)). (78)

is the retrograde inverse of m. Notice that minv(m) is also equal to inv(mir(m)) since the
two maps mir and inv commute. For instance,

minv

(∣∣∣∣ 2̄ 1
2 3

∣∣∣∣) =

∣∣∣∣ 1̄ 2
3̄ 2̄

∣∣∣∣ . (79)
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9. Harmonization. For any pattern p and any chord multi-pattern m of multiplicity m,

har(p,m) := cpm(p)⊙m (80)

is the harmonization of p according to m. For instance,

har

(
|1̄ 1 0 2| ,

∣∣∣∣∣024
∣∣∣∣∣
)

=

∣∣∣∣∣1̄ 1 0 2
1 3 2 4
3 5 4 6

∣∣∣∣∣ . (81)

10. Arpeggiation. For any pattern p and any arpeggio multi-pattern m of multiplicity m,

arp(p,m) := cpm(p)⊙m (82)

is the arpeggiation of p according to m. For instance,

arp

(
|1̄ 1 0 2| ,

∣∣∣∣∣ 1 4
2̄

∣∣∣∣∣
)

=

∣∣∣∣∣ 0 2 1 3
3 5 4 6

3̄ 1̄ 2̄ 0

∣∣∣∣∣ .
(83)

Any operation preserving the lengths and the arities is homogeneous. The operations trand, d ∈ Z,
inv, mir, and minv are homogeneous.

We are now in position to be more specific in what we explained at the end of Section 2.2.5 about the
fact that multi-patterns are operations on musical phrases. On the one hand, this feature is illustrated
by the existence of the previous operations. On the other hand, observe that if m is a multi-pattern,
it can be seen as an operation taking as input |m| multi-patterns m1, . . . ,m|m| and outputting the
multi-pattern m ◦

[
m1, . . . ,m|m|

]
. For instance, the multi-pattern

m := |1̄ 0 2| (84)

can be seen as an operation of arity 3 such that, for any multi-patterns m1, m2, and m3 of multiplicity
1 as inputs, in PZ

1 , m ◦ [m1,m2,m3] is the multi-pattern of multiplicity 1 obtained by concatenating
a version of m1 transposed one degree down, with a copy of m2, and with a version of m3 transposed
two degrees up. Similarly, the multi-pattern

m :=

∣∣∣∣ 0 0

∣∣∣∣ (85)

can be seen an operation of arity 1 such that, for any multi-pattern m1 of multiplicity 2 as input, in
PZ
2 , m ◦ [m1] is the multi-pattern obtained by adding a final rest to the first pattern of m1 and by

adding an initial rest to the second pattern of m1. The interpretation of this result is a musical phrase
wherein the second voice has been shifted one unit of time. A lot of other operations modifying both
the degrees and the rhythm can be constructed in this way.

3.3.4 Some benefits

Let us conclude this section by highlighting two additional significant benefits of the music box
model, in addition to the ones presented in Section 2.2.5 for multi-patterns:

1. the model is homogeneous;
2. the composition of multi-patterns is flexible.

The first benefit concerns the homogeneity of the music box model. Operations on musical phrases
are represented by using the same language as the musical phrases themselves, due to the fact that
multi-patterns are operations (as mentioned in Section 3.3.2). This is in contrast to other systems
where musical phrases and operations are defined using different languages, as seen in some other
models (see for instance (Fernández & Vico, 2013)).

The second benefit, about the flexibility of the composition, is a consequence of the fact that the D-
bud music box operad is parameterizable with different degree monoids D. By considering different
degree monoids, it is possible to drastically change the behavior of the operations on multi-patterns
and, as a result, the musical phrases generated by the model. While this section has mainly focused
on D-music box operads with D := (Z,+, 0) as the degree monoid, other monoids may provide
interesting operations on multi-patterns and musical phrases.
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4 Generation and random generation

Now we exploit the music box operads introduced in the previous section to design three random
generation algorithms devoted to generate new musical phrases from a finite set of multi-patterns.
This relies on colored operads and bud generating systems, a sort of formal grammars introduced
in (Giraudo, 2019).

4.1 Colored operads and bud operads

We provide here the elementary notions about colored operads (Yau, 2016) used in this work. We
also explain how to build colored operads from an operad.

4.1.1 Colored operads

A set of colors is any nonempty finite set C := {b1, . . . , br} wherein elements are called colors. A
C-colored set is a set C decomposing as a disjoint union

C :=
⊔
a∈C
u∈C∗

C(a, u), (86)

where the C(a, u), a ∈ C, u ∈ C∗, are sets. For any x ∈ C, there is by definition a unique pair
(a, u) ∈ C× C∗ such that x ∈ C(a, u). The arity |x| of x is the length ℓ(u) of u as a word, the output
color out(x) of x is a, and for any i ∈ [|x|], the i-th input color ini(x) of x is the i-th letter u(i) of u.
We also denote, for any n ∈ N, by C(n) the set of the elements of C of arity n. Therefore, a colored
set is in particular a graded set.

A C-colored operad is a triple (C, ◦i,1) such that C is a C-colored set, ◦i is a map

◦i : C(a, u)× C(u(i), v)→ C(a, u ◦i v), 1 ≤ i ≤ ℓ(u), (87)

called a partial composition map, where u ◦i v is the word on C obtained by replacing the i-th letter
u(i) of u by v, and 1 is a map

1 : C→ C(a, a), (88)
such that for any a ∈ C, 1(a) ∈ C(a, a), called a colored unit map. This data has to satisfy
Relations (10a) and (10b) when their left and right members are both well-defined, and, for any
x ∈ C, the relation

1(out(x)) ◦1 x = x = x ◦i 1(ini(x)), 1 ≤ i ≤ |x|. (89)

Intuitively, an element x of a colored operad having a as output color and u(i) as i-th input color for
any i ∈ [|x|] can be seen as an abstract operator wherein colors are assigned to its output and to each
of its inputs. Such an operator is depicted as

x

1 |x|

a

u(1) u(|x|)

. . .

, (90)

where the colors of the output and inputs are the squares put on the corresponding edges. The partial
composition of two elements x and y of a colored operad expresses pictorially as

x

1 |x|i

a

u(1) u(|x|)u(i)

. . . . . .

◦i y

1 |y|

u(i)

v(1) v(|y|)

. . .

=

x

1 |x| + |y| − 1. . . . . .

a

u(1) u(|x|)

y

i i + |y| − 1

v(1) v(|y|)

. . .

u(i) . (91)
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Most of the definitions about operads recalled in Section 3.1.4 generalize straightforwardly to colored
operads. In particular, one can consider the full composition map of a colored operad defined by (14)
when its right member is well-defined.

The situation is specific for the homogeneous composition for colored operads. Let (C, ◦i,1) be a
colored operad. The homogeneous composition map of C is the map

⊙ : C(a, u)× C(b, v)→ C, a, b ∈ C, u, v ∈ C∗, (92)

defined, for any x ∈ C(a, u) and y ∈ C(b, v), by using the full composition map, by

x⊙ y := x ◦
[
y1, . . . , y|x|

]
, (93)

where for any i ∈ [|x|],

yi :=

{
y if ini(x) = out(y),

1(ini(x)) otherwise.
(94)

Intuitively, x⊙ y is obtained by grafting simultaneously the outputs of copies of y onto the inputs
of x having the same color as the output color of y. If the set of colors of C is a singleton, the
homogeneous composition map of C is the homogeneous composition map of operads described in
Section 3.1.4.

4.1.2 Bud operads

Let us describe a general construction building a colored operad from a noncolored one introduced
in (Giraudo, 2019). Given a noncolored operad (O, ◦i,1) and a set C of colors, the C-bud operad
of O is the C-colored operad BC(O) defined in the following way. First, BC(O) is the C-colored set
defined, for any a ∈ C and u ∈ C∗, by

BC(O)(a, u) := {(a, x, u) : x ∈ O(ℓ(u))}. (95)

Second, the partial composition maps ◦i of BC(O) are defined, for any (a, x, u), (u(i), y, v) ∈
BC(O), and i ∈ [|u|], by

(a, x, u) ◦i (ui, y, v) := (a, x ◦i y, u ◦i v) (96)

where the first occurrence of ◦i in the right member of (96) is the partial composition map of O and
the second one is a substitution of words: u ◦i v is the word obtained by replacing in u the i-th letter
u(i) of u by v. Finally, the colored unit map 1 of BC(O) is defined by 1(a) := (a,1, a) for any
a ∈ C, where 1 is the unit of O. The pruning pr((a, x, u)) of an element (a, x, u) of BC(O) is the
element x of O.

Intuitively, this construction consists in forming a colored operad BC(O) out of O by surrounding its
elements with an output color and input colors coming from C in all possible ways.

For a fixed degree monoid D, we apply this construction to the D-music box operad by setting, for
any set C of colors,

BPD
m,C := BC

(
PD
m

)
. (97)

We call BPD
m,C the C-bud D-music box operad. The elements of BPD

m,C are called C-colored
multi-patterns. For instance, for C := {b1, b2, b3},(

b1,

∣∣∣∣1 0 1
7̄ 0 0

∣∣∣∣ , b2b2b1) (98)

is a C-colored multi-pattern. Moreover, in the colored operad BPZ
2,C, one has(

b3,

∣∣∣∣0 1
1̄ 0

∣∣∣∣ , b2b1) ◦2 (b1, ∣∣∣∣1 1 2
2 1̄ 2̄

∣∣∣∣ , b3b3b2) =

(
b3,

∣∣∣∣0 2 2 3
1̄ 2 1̄ 2̄

∣∣∣∣ , b2b3b3b2). (99)

The intuition that justifies the introduction of these colored versions of multi-patterns and of the
D-music box operad is that colors restrict the right to perform the composition of two given multi-
patterns. In this way, on a small scale, one can for instance forbid some intervals in the musical
phrases specified by the multi-patterns of a suboperad of BPD

m,C generated by a given set of C-colored
multi-patterns. On a larger scale, the colors allow us to build complex phrases by imposing some
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specific parts (for instance, a color might be used for the beginning of a piece, another for the middle,
and a third one for the end).

Besides, given a set G of C-colored multi-patterns, the elements of the suboperad of BPD
m,C generated

by G are obtained by composing elements of G. Therefore, in some sense, these elements inherit
from properties of the multi-patterns of G. The next section uses these ideas to propose random
generation algorithms outputting new multi-patterns from existing ones in a controlled way.

4.2 Bud generating systems

We describe here a sort of generating systems using operads and colored operads introduced in (Gi-
raudo, 2019). Slight variations are considered in this present work.

4.2.1 Bud generating systems

A bud generating system (Giraudo, 2019) is a tuple (O,C,R, b) where

(i) (O, ◦i,1) is an operad, called ground operad;

(ii) C is a set of colors;

(iii) R is a finite subset of BC(O), called set of rules;

(iv) b is a color of C, called initial color.

For any color a ∈ C, we shall denote byR(a) the set of the rules ofR having a as output color.

For instance, Bex :=
(
PZ
2 , {b1, b2, b3}, {c1, c2, c3, c4, c5}, b1

)
where

c1 :=

(
b1,

∣∣∣∣0 2 1 0 4
5̄ 0 0 0 0

∣∣∣∣ , b3b2b1b1b3), c2 :=

(
b1,

∣∣∣∣1 0
0 1

∣∣∣∣ , b1b1),
c3 :=

(
b2,

∣∣∣∣1̄1̄
∣∣∣∣ , b1), c4 :=

(
b2,

∣∣∣∣0 0
0 0

∣∣∣∣ , b1b1), c5 :=

(
b3,

∣∣∣∣00
∣∣∣∣ , b3) (100)

is a bud generating system.

Bud generating systems are devices similar to context-free formal grammars (Hopcroft et al., 2006)
wherein colors play the role of nonterminal symbols. Each element (a, x, u) ∈ R can be seen as
a production rule of the form a → (x, u). The color a plays the role of a nonterminal symbol, u
is a word of symbols wherein each letter can be seen as a terminal or a nonterminal symbol, and
x denotes additional information. As we shall see, this information is very important because bud
generating systems are intended to generate elements of O.

If context-free grammars are devices designed to generate sets of words, bud generating systems are
designed to generate more general combinatorial objects. More precisely, a bud generating system
(O,C,R, b) allows us to build elements of O by following three different operating modes. We
describe in the next sections the three corresponding random generation algorithms. These algorithms
are in particular intended to work with PD

m as ground operad in order to generate multi-patterns.

4.2.2 Random generation

In the next three sections, we shall design three random generation algorithms with the goal to
randomly generate elements ofO given a bud generating system havingO as ground operad. In these
sections, B := (O,C,R, b) is a bud generating system. We shall also consider the bud generating
system Bex introduced in Section 4.2.1 to provide some concrete examples. Besides, for any finite and
nonempty set S, RANDOM(S) is an element of S picked uniformly at random among the elements
of S.

4.2.3 Partial generation

Let ◦i−→ be the binary relation on BC(O) such that (a, x, u) ◦i−→ (a, y, v) if there is a rule r ∈ R and
i ∈ [|u|] such that

(a, y, v) = (a, x, u) ◦i r. (101)
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An element x of O is partially generated by B if there is an element (b, x, u) such that (b,1, b) is in
relation with (b, x, u) w.r.t. the reflexive and transitive closure of ◦i−→.

For instance, by considering the bud generating system Bex, since(
b1,

∣∣∣∣00
∣∣∣∣ , b1) ◦i−→

(
b1,

∣∣∣∣1 0
0 1

∣∣∣∣ , b1b1)
◦i−→
(
b1,

∣∣∣∣1 0 2 1 0 4
0 4̄ 1 1 1 1

∣∣∣∣ , b1b3b2b1b1b3)
◦i−→
(
b1,

∣∣∣∣1 0 2 2 1 0 4
0 4̄ 1 1 1 1 1

∣∣∣∣ , b1b3b1b1b1b1b3),
(102)

the multi-pattern ∣∣∣∣1 0 2 2 1 0 4
0 4̄ 1 1 1 1 1

∣∣∣∣ (103)

is partially generated by Bex.

Algorithm 1 returns an element partially generated by B obtained by applying at most k rules to the
initial element (b,1, b). The execution of the algorithm builds a syntax tree of elements ofR with at
most k internal nodes.

Algorithm 1: Partial random generation.
Data: A bud generating system B := (O,C,R, b) and an integer k ∈ N.
Result: A randomly generated element of O.

1 begin
2 x← (b,1, b)
3 for j ∈ [k] do
4 i← RANDOM([|x|])
5 ifR(ini(x)) ̸= ∅ then
6 r ← RANDOM(R(ini(x)))
7 x← x ◦i r

8 return pr(x)

For instance, by considering the previous bud generating system Bex, this algorithm run with k := 5
builds the syntax tree of colored multi-patterns

c3 c5

c1

c2

c1

(104)

which produces, when evaluated, the multi-pattern∣∣∣∣0 1 2 1 3 2 1 5 0 4
5̄ 1̄ 0 4̄ 1 1 1 1 0 0

∣∣∣∣ . (105)

4.2.4 Full generation

Let ◦−→ be the binary relation on BC(O) such that (a, x, u) ◦−→ (a, y, v) if there are rules r1, . . . , r|x| ∈
R such that

(a, y, v) = (a, x, u) ◦
[
r1, . . . , r|x|

]
. (106)

An element x of O is fully generated by B if there is an element (b, x, u) such that (b,1, b) is in
relation with (b, x, u) w.r.t. the reflexive and transitive closure of ◦−→.
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For instance, by considering the bud generating system Bex, since(
b1,

∣∣∣∣00
∣∣∣∣ , b1) ◦−→

(
b1,

∣∣∣∣0 2 1 0 4
5̄ 0 0 0 0

∣∣∣∣ , b3b2b1b1b3)
◦−→
(
b1,

∣∣∣∣0 1 2 1 0 2 1 0 4 4
5̄ 1̄ 0 1 5̄ 0 0 0 0 0

∣∣∣∣ , b3b1b1b1b3b2b1b1b3b3),
(107)

the multi-pattern ∣∣∣∣0 1 2 1 0 2 1 0 4 4
5̄ 1̄ 0 1 5̄ 0 0 0 0 0

∣∣∣∣ (108)

is fully generated by Bex.

Bud generating systems together with this scheme for generation are very similar to Lindenmayer
systems, which are sorts of formal grammars (Lindenmayer, 1968). Such systems lead to frameworks
to generate musical phrases (Hudak & Quick, 2018; Mason & Saffle, 1994; McCormack, 1996).

Algorithm 2 returns an element synchronously generated by B obtained by applying at most k rules
to the initial element (b,1, b). The execution of the algorithm builds a syntax tree of elements ofR
of height at most k + 1 wherein the leaves are all at the same distance from the root.

Algorithm 2: Full random generation.
Data: A bud generating system B := (O,C,R, b) and an integer k ∈ N.
Result: A randomly generated element of O.

1 begin
2 x← (b,1, b)
3 for j ∈ [k] do
4 R← R(in1(x))× · · · × R

(
in|x|(x)

)
5 if R ̸= ∅ then
6

(
r1, . . . , r|x|

)
← RANDOM(R)

7 x← x ◦
[
r1, . . . , r|x|

]
8 return pr(x)

Observe that when for all colors b ∈ C, the setsR(b) have no more than one element, this algorithm
is deterministic.

For instance, by considering the previous bud generating system Bex, this algorithm run with k := 2
builds the syntax tree of colored multi-patterns

c2

c5 c3

c1

c2c1 c2 c5

c2

c2

(109)

which produces, when evaluated, the multi-pattern∣∣∣∣2 4 3 2 6 2 1 0 1 2 1 1 0 4
5̄ 0 0 0 0 1 2 4̄ 0 1 2 1 2 1

∣∣∣∣ . (110)

4.2.5 Homogeneous generation

Let ⊙−→ be the binary relation on BC(O) such that (a, x, u) ⊙−→ (a, y, v) if there is a rule r ∈ R such
that

(a, y, v) = (a, x, u)⊙ r. (111)
An element x ofO is homogeneously generated by B if there is an element (b, x, u) such that (b,1, b)
is in relation with (b, x, u) w.r.t. the reflexive and transitive closure of ⊙−→.
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For instance, by considering the bud generating system Bex, since(
b1,

∣∣∣∣00
∣∣∣∣ , b1) ⊙−→

(
b1,

∣∣∣∣0 2 1 0 4
5̄ 0 0 0 0

∣∣∣∣ , b3b2b1b1b3)
⊙−→
(
b1,

∣∣∣∣0 2 2 1 1 0 4
5̄ 0 0 1 0 1 0

∣∣∣∣ , b3b2b1b1b1b1b3)
⊙−→
(
b1,

∣∣∣∣0 1 2 1 1 0 4
5̄ 1̄ 0 1 0 1 0

∣∣∣∣ , b3b1b1b1b1b1b3),
(112)

the multi-pattern ∣∣∣∣0 1 2 1 1 0 4
5̄ 1̄ 0 1 0 1 0

∣∣∣∣ (113)

is homogeneously generated by Bex.

Algorithm 3 returns an element homogeneously generated by B obtained by applying at most k rules
to the initial element (b,1, b). The execution of the algorithm builds a syntax tree of elements of
height at most k + 1.

Algorithm 3: Homogeneous random generation.
Data: A bud generating system B := (O,C,R, b) and an integer k ∈ N.
Result: A randomly generated element of O.

1 begin
2 x← (b,1, b)
3 for j ∈ [k] do
4 ifR ≠ ∅ then
5 r ← RANDOM(R)
6 r ← x⊙ r

7 return pr(x)

Observe that when the set of rulesR has no more than one element, this algorithm is deterministic.

For instance, by considering the previous bud generating system Bex, this algorithm run with k := 3
builds the syntax tree of colored multi-patterns

c5

c5 c5 c3

c1c3

c5

c5

c1

c5 c3

c1 (114)

which produces, when evaluated, the multi-pattern∣∣∣∣0 1 1 2 2 1 5 0 1 1 0 4 4
5̄ 1̄ 5̄ 1̄ 0 0 0 5̄ 1̄ 0 0 0 0

∣∣∣∣ . (115)

5 Applications

In this part, we introduce some basic notions about an implementation of the bud music box model.
Next, we construct three particular bud generating systems devoted to work with the algorithms
introduced in Section 4.2. They generate variations of multi-patterns placed at input, with possibly
some auxiliary data. All these constructions are illustrated with some small examples. Finally, we
use these constructions to propose a bud generating system for the random generation of a complete
musical piece.
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5.1 The Bud Music Box system

The music box model, the related operads, and the related random generation algorithms have
been implemented by the author. The program, named Bud Music Box, as well as its complete
documentation are available at (Giraudo, 2023). We review some of the main instructions of the
language thus designed, useful to understand the examples of the next sections.

5.1.1 Context instructions

Here are the main instructions of the language used to specify the context in which the multi-patterns
will be interpreted:

• scale i_1 ... i_k sets the scale specified by the sequence i_1 ... i_k designating the
distances in semitones between two consecutive notes. The multi-patterns of the program
are interpreted through this scale.

• root note sets the root note specified by the MIDI code note . The multi-patterns of the
program are interpreted so that the degree 0 corresponds with the specified MIDI note.

• tempo v sets the tempo specified by the value v designating a tempo in beats per minute.
The multi-patterns of the program are interpreted through this specified tempo.

• sounds s_1 ... s_k sets the sounds specified by the sequence s_1 ... s_k of General MIDI
programs (which are nonnegative integers). The code s_i designates the MIDI instrument
for the i-th voice of each multi-pattern of the program.

• monoid dm set dm as the degree monoid on which the multi-patterns of the program are
defined. The possible values for dm are add for the degree monoid Z, cyclic k for the
degree monoid Ck, and max z for the degree monoid MZ where Z is the set of the integers
greater than or equal to z.

5.1.2 Multi-pattern operation instructions

Here are the main instructions of the language used to define, modify, and generate multi-patterns:

• multi-pattern mpat description creates a multi-pattern identified by mpat . It is specified by
description which encodes a multi-pattern by the sequence of its patterns separated by +

symbols, where degrees are signed integers and rests are encoded by . symbols.

• stack mpat mpat_1 ... mpat_r creates a multi-pattern identified by mpat obtained by stack-
ing the existing multi-patterns identified by mpat_1 , . . . , mpat_r .

• mirror mpat mpat’ creates a multi-pattern identified by mpat and whose value is the retro-
grade of an existing multi-pattern identified by mpat’ .

• inverse mpat mpat’ creates a multi-pattern identified by mpat and whose value is the inverse
image of an existing multi-pattern identified by mpat’ .

• colorize cmpat %col_out mpat %col_in_1 ... %col_in_n creates a colored multi-pattern
identified by cmpat and whose value is the triple having %col_out as output color,
the existing multi-pattern identified by mpat as multi-pattern, and the sequence
%col_in_1 ... %col_in_n as input colors.

• mono-colorize cmpat %col_out mpat %col_in creates a colored multi-pattern identified by
cmpat and whose value is the triple having %col_out as output color, the existing multi-
pattern identified by mpat as multi-pattern, and the sequence made of the single color
%col_in as input colors. This sequence has automatically the right size according to the arity
of the multi-pattern identified by mpat .

• generate mpat mode k %col_init cmpat_1 ... cmpat_r creates a multi-pattern identified by
mpat and whose value is a multi-pattern randomly generated by the partial (resp. full,
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homogeneous) generation algorithm if mode is equal to partial (resp. full , homogeneous),
run with its parameter k equal to k on the bud generating system

(
PD
m,C,R, b

)
defined as

follows. The degree monoid D is the one which has been specified in the context. The set of
rulesR consists of the existing colored multi-patterns identified by cmpat_1 , . . . , cmpat_r ,
m is the common multiplicity of the multi-patterns appearing inR, b is the color %col_init ,
and C is the smallest set of colors containing the involved colors.

5.2 Particular bud generating systems

We introduce here monochrome bud generating systems, which are basically bud generating systems
where colors do not play any role, and use these to construct a bud generating system devoted to
randomly generate mixes of multi-patterns. We describe also three bud generating systems devoted to
randomly generate multi-patterns from a single pattern and some auxiliary data.

5.2.1 Monochrome bud generating systems

A bud generating system B is monochrome if its set of colors is a singleton {b}. In this case, the fact
that there is only one color implies that there is no constraint for the application of the rules of B.
Any pair (O, R) where O is an operad and R is a finite subset of O specifies the monochrome bud
generating system (O, {b},R, b) whereR is the set of the rules

(
b, x, b|x|

)
for all x ∈ R.

5.2.2 Style emulation

Given a set M of multi-patterns all of the same multiplicity m, the mix bud generating system Bmix
M

of M is the monochrome bud generating system specified by the pair
(
PZ
m,M

)
. The partial, full, and

homogeneous random generation algorithms run withBmix
M randomly generate multi-patterns obtained

by composing elements of M together. Such a multi-pattern m potentially inherits characteristics
from the multi-patterns of M . Hence, Bmix

M can be seen as a style emulation device.

For instance, consider the multi-patterns

m1 :=

∣∣∣∣0 0 1 2 1̄ 1̄ 0 1 2̄ 0
3̄ 0 1 2 4̄ 1̄ 0 1 2 3̄

∣∣∣∣ and m2 :=

∣∣∣∣0 4 0 5 1 2 0
0 4 0 2̄ 1 2 0

∣∣∣∣ . (116)

The partial random generation algorithm run with Bmix
M where M := {m1,m2} and k := 3 as inputs

produces the multi-pattern∣∣∣∣0 4 0 5 1 2 0 0 1 2 1̄ 1̄ 0 0 1 2 1̄ 1̄ 0 1 2̄ 0 1 2̄ 0
0 4 0 2̄ 1 2 3̄ 0 1 2 4̄ 1̄ 3̄ 0 1 2 4̄ 1̄ 0 1 2 3̄ 1 2 3̄

∣∣∣∣ . (117)

This multi-pattern interprets as the musical phrase

= 120

4
4

4
4

Here is the Bud Music Box program associated with this example:

scale 2 1 2 2 1 2 2
root 57
tempo 120
sounds 0 0
monoid add
multi-pattern m1 0 . 0 1 2 -1 . -1 0 1 -2 . 0 + -3 . 0 1 2 -4 . -1 0 1 2 -3 .
multi-pattern m2 0 4 0 5 . 1 2 0 + 0 4 0 . -2 1 2 0
mono-colorize c1 %b m1 %b
mono-colorize c2 %b m2 %b
generate res partial 3 %b c1 c2
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5.2.3 Horizontal transformations

Given a pattern p and a sequence Ψ of length q ≥ 1 of maps on the set of the patterns, the Ψ-horizontal
bud generating system of p and Ψ is the monochrome bud generating system Bhorp,Ψ := Bmix

M where
M is the set of multi-patterns

{Ψ(1)(p), . . . ,Ψ(q)(p)}. (118)

For instance, consider the pattern p := |0 1 1̄ 0 2 0 | and the sequence Ψ of length 3 of
maps such that Ψ(1) is the identity map, Ψ(2) is the retrograde map, and Ψ(3) is the inverse map
(see Section 3.3.3). The partial random generation algorithm run with Bhorp,Ψ and k := 4 as inputs
produces the multi-pattern

|0 1̄ 1 2 0 1 3 1 0 2̄ 0 1 1̄ 0 2 0 1̄ 1 0 2 0 | . (119)

This multi-pattern interprets as the musical phrase

= 120

4
4

Here is the Bud Music Box program associated with this example:

scale 2 1 2 2 1 2 2
root 57
tempo 120
sounds 0 0
monoid add
multi-pattern p 0 1 . -1 0 . 2 0 .
mirror p1 p
inverse p2 p
mono-colorize c %b p %b
mono-colorize c1 %b p1 %b
mono-colorize c2 %b p2 %b
generate res partial 4 %b c c1 c2

5.2.4 Vertical transformations

Given a pattern p and a sequence Λ of length q ≥ 1 of homogeneous operations (see Section 3.3.3)
on the set of the patterns, the Λ-vertical bud generating system of p and Λ is the monochrome bud
generating system Bverp,Λ := Bmix

M where M is the singleton containing the multi-pattern

Λ(p) := Λ(1)(p) ■ · · · ■ Λ(q)(p). (120)

For instance, consider the pattern p := |0 1 1̄ 0 2 0 | and the sequence Λ of length 2
of homogeneous operations such that Λ(1) is the identity map and Λ(2) is the retrograde inverse
map. The partial random generation algorithm run with Bverp,Λ and k := 4 as inputs produces the
multi-pattern∣∣∣∣ 0 1 2 0 1 2 0 1 3 4 2 3 5 3 1 3 1 1̄ 0 2 0

0 2̄ 4̄ 2̄ 1̄ 3̄ 1̄ 0 2̄ 4̄ 2̄ 1̄ 3̄ 2̄ 1̄ 3̄ 2̄ 0 1 1̄ 0

∣∣∣∣ .
(121)

This multi-pattern interprets as the musical phrase

= 120

4
4

4
4

Here is the Bud Music Box program associated with this example:
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scale 2 1 2 2 1 2 2
root 57
tempo 120
sounds 0 0
monoid add
multi-pattern p 0 1 . -1 0 . 2 0 .
mirror p1 p
inverse p2 p
mirror p3 p2
stack m p p3
mono-colorize c %b m %b
generate res partial 4 %b c

5.2.5 Local variations

Given a pattern p and a set M := {m1, . . . ,mq}, q ≥ 0, of multi-patterns of multiplicity m, the
variation bud generating system of p and M is the bud generating system Bvarp,M :=

(
PZ
m,C,R, b1

)
where C is the set of colors {b1, b2, b3} andR is the set of rules containing the colored multi-patterns(
b1, cpm(p), b

|p|
2

)
,
(
b2, cpm(p), b

|p|
2

)
,
(
b2,m1, b

|m1|
3

)
, . . . ,

(
b2,mq, b

|mq|
3

)
, (b3, cpm(0), b3).

(122)
The partial, full, and homogeneous random generation algorithms run with Bvarp,M randomly generate
multi-patterns of multiplicity m obtained by self-composing cpm(p) and then, by transforming some
beats of the obtained multi-pattern by composing them with elements of M . The color b1 is the
initial color in order to start the generation with cpm(p), b2 is an intermediate color, and the color
b3 prevents compositions of patterns of M with cpm(p) or with other patterns of M in order to not
create degenerated results. The rule (b3, cpm(0), b3) is important since this rule admits b3 as output
color, what is required in the case where this bud generating system is used with the full random
generation algorithm.

Observe that a chord of M acts by changing one beat of the current generated pattern by an harmonized
version of it. Similarly, a flat multi-pattern of M acts by changing one beat of the current generated
pattern by a scheme of beats having the same degree. Finally, an arpeggio of M acts by changing one
beat of the current generated pattern by an arpeggiated version of it.

For instance, consider the multi-patterns

p := |0 1 1̄ 0 2 0 | , m1 :=

∣∣∣∣ 0 0
0 0

∣∣∣∣ , and m2 :=

∣∣∣∣04
∣∣∣∣ . (123)

The full random generation algorithm run with Bvarp,M where M := {m1,m2} and k := 2 as inputs
produces the multi-pattern∣∣∣∣0 1 2 0 1 3 1 1̄ 1̄ 0 2 3 1 2 4 2 0 0

4 1 2 0 1 3 1 1̄ 1̄ 4 2 3 1 2 4 2 0 0

∣∣∣∣ . (124)

This multi-pattern interprets as the musical phrase

= 120

4
4

4
4

Here is the Bud Music Box program associated with this example:
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scale 2 1 2 2 1 2 2
root 57
tempo 120
sounds 0 0
monoid add
multi-pattern p 0 1 . -1 0 . 2 0 .
stack m p p
multi-pattern m1 0 0 . + . 0 0
multi-pattern m2 0 + 4
multi-pattern u 0 + 0
mono-colorize c1 %b1 m %b2
mono-colorize c2 %b2 m %b2
mono-colorize cm1 %b2 m1 %b3
colorize cm2 %b2 m2 %b3
colorize cu %b3 u %b3
generate res full 2 %b1 c1 c2 cm1 cm2 cu

5.3 Generating structured pieces

With the aim to use bud generating systems to produce complete pieces, we first define a notion of
composition of bud generating systems. Then, we use the constructions presented in Section 5.2 to
propose an example of a piece generated by the tools presented by this paper.

5.3.1 Composition of bud generating systems

Let O be an operad, x be an element of arity n ∈ N of O, and Bi := (O,Ci,Ri, bi), i ∈ [n], be bud
generating systems such that for all i ̸= i′ ∈ [n], Ci and Ci′ are disjoint. The composition of x with
B1, . . . , Bn is the bud generating system x ◦ [B1, . . . ,Bn] := (O,C,R, b) such that

C :=

 ⊔
i∈[n]

Ci

 ⊔ {b} and R :=

 ⊔
i∈[n]

Ri

 ⊔ {(b, x, b1 . . . bn)}. (125)

It is easy to see that any element partially (resp. fully, homogeneously) generated by x ◦ [B1, . . . ,Bn]
is of the form x ◦ [x1, . . . , xn] where for any i ∈ [n], xi is an element partially (resp. fully, homoge-
neously) generated by Bi.
In this context of bud generating systems having PZ

m, m ≥ 1, as ground operad, this construction is
useful to generate complete musical pieces. Indeed, given a multi-pattern m ∈ PZ

m of arity n ∈ N and
bud generating systems Bi, i ∈ [n], having PZ

m as ground operads, the partial, full, and homogeneous
random generation algorithms run with m ◦ [B1, . . . ,Bn] generate multi-patterns formed of n parts
such that each Bi directs the i-th part, and such that m connects all the parts together.

5.3.2 A complete example

Let us use the composition of bud generating systems and some of the previous constructions to
provide a complete example of the generation of a musical piece. Let Λ be the sequence of length
2 of homogeneous operations such that Λ(1) is the identity map and Λ(2) is the retrograde inverse
map. Let the multi-patterns

m :=

∣∣∣∣7 1̄ 7 14 2 14
0 8̄ 0 0 5̄ 0

∣∣∣∣ , p1 := |0 0 2̄ 2 1̄ 0| , p2 := |0 2 2̄ 0 2 0 | , (126)

and, by using the notation introduced in (120), p′
1 := Λ(p1) and p′

2 := Λ(p2). Let also the
bud generating systems B1 := B2 := Bverp1,Λ

, B3 := B4 := Bmix

{p′
1,p

′
2}
, B5 := B6 := Bverp2,Λ

, and

B := m ◦ [B1,B2,B3,B4,B5,B6].
Let us discuss about the structure of a multi-pattern generated by any of the three random generation
algorithm run with B. Since m is of arity 6, such a multi-pattern consists of six parts, having the
following properties:
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1. The first one consists in self-composing p′
1, where the first voice is transposed one octave

up (since m(1)(1) = 7).

2. The second one consists in self-composing p′
1 where the first voice is transposed one degree

down (since m(2)(1) = 1̄) and the second voice is transposed one degree and one octave
down (since m(2)(2) = 8̄).

3. The third one consists in composing freely p′
1 and p′

2 together where the first voice is
transposed one octave up (since m(3)(1) = 7).

4. The fourth one consists in composing freely p′
1 and p′

2 together where the first voice is
transposed two octaves up (since m(4)(1) = 14).

5. The fifth one consists in self-composing p′
2 where the first voice is transposed two degrees

up (since m(5)(1) = 2) and the second voice is transposed five degrees down (since
m(5)(2) = 5̄).

6. The sixth one consists in self-composing p′
2 where the first voice is transposed two octaves

up (since m(6)(1) = 14).

Here is the Bud Music Box program associated with this example:

scale 2 2 1 2 2 2 1
root 60
tempo 180
sounds 0 0
monoid add
multi-pattern p1 0 . 0 -2 2 . -1 0 + 0 1 . -2 2 0 . 0
multi-pattern p2 0 2 . -2 0 2 0 . + . 0 -2 0 2 . -2 0
multi-pattern p3 7 -1 7 14 2 14 + 0 -8 0 0 -5 0
mono-colorize c1 %ph_1 p1 %ph_1
mono-colorize c2 %ph_2 p1 %ph_2
mono-colorize c3 %ph_2 p2 %ph_2
mono-colorize c4 %ph_3 p2 %ph_3
colorize c5 %start p3 %ph_1 %ph_1 %ph_2 %ph_2 %ph_3 %ph_3
generate res full 3 %start c1 c2 c3 c4 c5

6 Evaluation of the generation algorithms

We have developed a listening study including a questionnaire, intended to gain a clearer understand-
ing of the musical scope of our generation algorithms. We begin by describing the questionnaire,
then present its results, and finally provide an interpretation.

6.1 Description of the study

Let us now offer a detailed description of the questionnaire, outline its modalities, and present some
pertinent data about its participants.

6.1.1 Practical details, objectives, and participants

The questionnaire was made available for a month starting from December 2023, and was hosted
on Google Forms. It was broadcast through several channels, including the Creative Code Paris
community, the International Society for Music Information Retrieval community, the Society for
Mathematics and Computation in Music community, the Institut de recherche et coordination acous-
tique/musique, and the musiSorbonne mailing list. The duration of the questionnaire is approximately
ten minutes. After giving their consent for this study, the participants were asked to specify their level
of expertise and then their areas of expertise. Subsequently, ten tracks were presented to them for
listening.

We have conceived five Bud Music Box programs generating some tracks, and selected five works
composed by humans. Following the listening of each of these pieces, we ask the following four
identical questions to evaluate how they are received:
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(Q1) How would you rate the aesthetic appeal of this track? Range: 0 is “very ugly” and 10 is
“very beautiful”.

(Q2) How would you rate the general complexity of this track? Range: 0 is “extremely simplistic”
and 10 is “extremely complex”.

(Q3) Would you have liked the track to have lasted longer? For instance, 4 or 5 means that
listening was a good experience over the proposed duration, but that a longer duration
might have been less interesting. Range: 0 is “absolutely not” and 10 is “definitively”.

(Q4) How likely do you think this track was composed by a human (instead of an algorithm)?
Range: 0 is “most likely by an algorithm” and 10 is “most likely by a human”.

In addition, a comment space is provided to collect the comments of each participant for each piece.
The scores out of 10 obtained for each track provide us with an indication of their perceived quality
according to various aspects. The participants, not knowing which work is composed according to our
method or by a human, results in the scores obtained on all five human works serving as a benchmark
to evaluate the works generated by our method.

The questionnaire was filled out by 70 participants. Among them, 29 declared having a level of
expertise equal to or greater than 8 out of 10. Our analysis of the results is based solely on the
opinions of these 29 experts. Upon analyzing the declared areas of expertise, the most frequently
occurring fields of expertise are piano practice (nine times), electronic music (six times), and popular
music (four times).

6.1.2 Musical tracks

Each offered track lasts 30 seconds and in any case, the sound begins with a gradual increase in the
first few seconds, then stabilizes, and diminishes in the last few seconds. In order to standardize the
interpretation, each track is played from a MIDI file. Here is the list of the considered tracks:

• T1 Computer-generated, P_2_4.bmb - -seed 8.

• T2 Human-composed, Erik Satie, Vexations, 1893.

• T3 Computer-generated, H_2_5-2-1-1.bmb - -seed 4.

• T4 Computer-generated, F_2_6-6-6.bmb - -seed 0.

• T5 Human-composed, Johann Sebastian Bach, Duetto in E minor, BWV 802, 1739.

• T6 Computer-generated, P_2_15-3-1.bmb - -seed 5.

• T7 Human-composed, Radan Papezik, 12-tone blues, 2006.

• T8 Human-composed, Erik Satie, Españaña, Croquis et Agaceries d’un gros bonhomme en
bois, 1913.

• T9 Computer-generated, H_2_3-2-1-1.bmb - -seed 3.

• T10 Human-composed, Johann Sebastian Bach, Fugue in C minor, BWV 906b, 1738.

They are presented in this exact order to all participants. This order was selected at random when the
questionnaire was designed.

As explained in Section 4, the bud music box algorithms work partly in generating musical phrases
through performing some mechanical operations on them, reminiscent of some works by Bach.
For this reason, we chose two excerpts T5 and T10 from this composer. Additionally, since some
generated phrases sometimes recall passages of minimal music, we have chosen T2 and T8, extracted
from works of Satie who is often considered one of the precursors of this trend, although this is
certainly debatable. We have also included T7, a more recent and royalty-free composition of Papezik
which falls within the serialism movement. Under particular settings, our generation method can
produce passages that are close to this style.

Our five computer-generated tracks are based upon small sets of small multi-patterns. For instance,
T4 results from the program presented in Section 5.3.2. We made this paradigmatic choice because,
in the extreme, with very long multi-patterns taken from existing compositions, our algorithms would
generate pieces too close to the original ones. This approach, which prioritizes distinctiveness over
replication, is intentional for the scope of our current evaluation, although this stance is open to
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reconsideration, as will be discussed in Section 6.2.3. Consequently, we aimed to find a middle
ground between the simplicity of the multi-patterns and our subjective perception of the outcomes.
Additionally, it is important to note that our expertise does not lie in the field of musical composition.

Here is a very important remark: our objective is not to claim that our method can, even remotely,
produce pieces comparable to those ones of human composers. Rather, our aim is to have standard
works that can be used to detect the quality of responses, and whose metrics can be used as benchmarks
to estimate the quality of the computer-generated creations.

6.2 Results and interpretation

Here we present some significant data collected during the study. We then offer an interpretation of
this data before presenting the limitations of the study and a conclusion.

6.2.1 some statistics

The following histograms present some distributions of responses, ranging from 0 to 10, for each
question among (Q1), (Q2), (Q3), and (Q4) merged for the human-composed pieces on the left and
for the computer-generated tracks on the right. Orange thick lines are positioned on the means of the
distributions. Approximations of these values are denoted by “m” under the histograms. Transparent
orange rectangles around the means, having widths of twice the standard deviations, are also depicted.
Approximations of these values are denoted by “σ” under the histograms.

• Distributions of the aesthetic appeal evaluation:

m ≃ 5.40, σ ≃ 2.70 m ≃ 3.58, σ ≃ 2.47

• Distributions of the complexity evaluations:

m ≃ 5.33, σ ≃ 2.36 m ≃ 2.99, σ ≃ 1.90

• Distributions of the willingness to listen evaluation:

m ≃ 5.07, σ ≃ 3.24 m ≃ 2.99, σ ≃ 2.64

• Distributions of the human composition likelihood evaluation:
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m ≃ 5.48, σ ≃ 3.03 m ≃ 3.21, σ ≃ 2.37

Let us consider the mean absolute error regarding Question (Q4), which asks to classify the tracks
according to their origin. By interpreting it as an accuracy rate, this value is about 55% ≃ 5.48/10 on
human-composed pieces (since the expected correct response is 10/10) and about 68% ≃ 1−3.21/10
on computer-generated tracks (since the expected correct response is 0/10).

The following histograms present the ten tracks ranked w.r.t. the average rating assigned by partici-
pants for each question among (Q1), (Q2), (Q3), and (Q4):

• Aesthetic appeal ranking:

• Complexity ranking:

• Willingness to listen ranking:

• Human composition likelihood ranking:

Here is the ranking w.r.t. the means of the sums of the evaluations of Questions (Q1), (Q2), (Q3),
and (Q4):

Let us now present a synthesis of the observations of the participants. The total number of comments
left for human-composed pieces is 69 (approximately 48% of participants commented on average
on each such track) and the total number of comments left for computer-generated tracks is 61
(approximately of 42% participants commented on average on each such track).

In evaluating the five human-composed pieces, participants noted contrasts between simple rhythms
and complex harmonies. There was frequent speculation about whether the pieces were human-
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composed or algorithmically generated, particularly due to their mechanical tones and lack of
expressive variation. Certain pieces were appreciated for their clear direction and contrapuntal styles,
drawing comparisons to baroque composers like Bach. Opinions remained divided regarding the
authenticity of the compositions, with some tracks being praised for their sophistication and others
critiqued as generic or excessively mechanical in their emulation of classical styles.

The evaluations of the five tracks generated by our method indicate a general perception of simplicity
and predictability in melody and harmonic structure. The mechanical and synthetic quality was
often highlighted, with listeners expressing a need for more variety and depth, often finding the
compositions too repetitive. The repetitive and predictable nature of some pieces led to speculation
about the possibilities for algorithmic composition. However, positive elements such as interesting
rhythmic patterns, minimalist aspects, gamelan-like elements, and intriguing intervals were also
noted.

6.2.2 Interpretation

Let us provide an interpretation of the previous results.

About classification accuracy The classification accuracy rate on computer-generated tracks
suggests that roughly one out of every three tracks generated by the bud music box algorithms is
perceived as having a reasonable chance of being composed by a human. Similarly, one out of every
two tracks composed by a human is perceived as having been generated by a computer. This relatively
high rate might be explained by the choice of the sounds forming the tracks, as discussed further in
Section 6.2.3. Therefore, although the classification accuracy is not exceptional, it is encouraging for
our method that nearly a third of the tracks generated by the machine could be reasonably perceived
as human-composed. This outcome is particularly significant considering the limitations in sound
quality.

About the general aesthetic appeal of the tracks We observed that the mean aesthetic appeal
for all five computer-generated tracks is about 3.6/10. Conversely, the aesthetic appeal for all five
human-composed tracks is about 5.4/10. This notable quasi two-points difference demonstrates
consistency in the responses since the human-composed tracks served as benchmarks for evaluating
the perceived quality of the tracks generated by our algorithms. This relatively modest rating of
5.4/10 reflects a level of severity and stringency in the responses to Question (Q1). Based on
participant comments, this severity can be partly attributed to the quality of the MIDI sounds and
automatic interpretations. Nevertheless, the aesthetic appeal of the tracks generated by our method
is reasonably good. It was particularly noteworthy to find T3 in the fourth position in the overall
rankings of tracks w.r.t. their aesthetic appeals.

About the general ranking of the tracks To derive a general evaluation of a track, we calculated
a score based on the mean of the sums of the responses received for Questions (Q1), (Q2), (Q3),
and (Q4). This approach is deemed relevant as all four dimensions highlight positive attributes
of the tracks. Particularly for the last question, it was considered coherent to assign a value to a
piece proportional to the impression it creates of being human-composed. All computer-generated
tracks were ranked lower than human-composed pieces. Track T1 ranked the lowest, but notably, T3
was very close to the human-composed track at fifth position. This appears to be influenced by the
relatively low perceived complexity in response to Question (Q2). Overall, the best tracks generated
by our method are T3 and T4.

6.2.3 Limitations

Let us state some of the limitations of this study.

On the order of the presented tracks A primary concern pertains to the questionnaire design,
especially concerning the order in which the tracks were presented. As mentioned above, the order
was randomly selected once the questionnaire was designed. However, to more effectively mitigate
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potential bias arising from the order in which tracks are presented, it would have been preferable to
provide each participant with a uniquely randomized order of tracks.

On the identification of expert participants We paid particular attention to the responses from
experts in various fields of music, which was crucial to get significant responses. The identification
of experts was based on self-assessment of their expertise. This approach, however, introduces at
least two significant issues. Firstly, self-assessment is inherently subjective and can be influenced by
an individual level of humility or self-confidence. Consequently, it is probable that some individuals
with expert-level skills were categorized as non-experts. Additionally, setting a minimum threshold
of 8 out of 10 for expert classification is arbitrary. While efforts were made to calibrate responses to
this question, the process was not foolproof.

On the sound quality and interpretation of the tracks A significant challenge in this study was
the quality of the interpretation of the tracks. As outlined in the questionnaire description, we opted
to use MIDI-generated tracks to ensure that the quality of their interpretation did not overshadow
their intrinsic compositional qualities. However, as highlighted in numerous participant comments,
this decision significantly impacted the reception of the pieces. It is important to note that due to this
limitation, the scores obtained from the study should not be interpreted in absolute terms, but rather
in relative terms. Despite this constraint, the approach was adequate for the objectives of the current
study.

On the musical quality of the computer-generated tracks The tempered reception of the par-
ticipants towards the tracks generated by our algorithms was previously discussed. However, as
highlighted in earlier sections, some characteristics of the computer-generated pieces were better
received than certain human-composed works (like for instance for T3 which is ranked ahead of T2
and T7 for Question (Q1), and ahead of T7 for Question (Q3)). Of course, this does not necessarily
imply intrinsic value in the algorithmically generated pieces. A preferable approach would have been
to offer tracks of significantly higher quality. As mentioned, the pieces produced by our algorithms
were constructed from small sets of multi-patterns. An advantageous modification could have in-
volved relaxing this somewhat arbitrary constraint slightly, allowing the inclusion of phrases from
works in the styles we aimed to emulate as multi-patterns. This approach, being easily implementable,
would have yielded a distinctly different set of pieces.

6.2.4 Conclusion

The objective of this evaluation study was successfully achieved. We garnered very consistent
responses from participants, which provided a clearer understanding of the quality of music generated
by the bud music box algorithms. As anticipated, the reception of the algorithm-generated pieces was
less favorable compared to those composed by humans. However, we now possess a valuable point
of comparison, highlighting that certain rhythmic and harmonic elements were effectively captured.
Interestingly, the results revealed not only expected elements of minimal music but also surprising
instances of gamelan music influences. The primary criticism revolved around the simplicity and
repetitiveness of the pieces. To further advance this research, it would be beneficial for a composer to
directly engage with our algorithm. By merging their expertise with the capabilities of the algorithm,
we could explore high-quality compositions and fully realize the potential of the method.

7 Conclusion and perspectives

In this work, we have introduced the music box model, a framework to represent musical phrases
as multi-patterns, perform computations on these, and various random generation algorithms. This
framework has some strengths and weaknesses as discussed in Sections 2.2.4, 2.2.5, and 3.3.3. Our
generative algorithms, derived from this framework, were also the subject of an evaluation, reported
in Section 6. Here are some perspectives raised by this work.

The first one consists in the description of a minimal generating set for the operad PD
m, m ≥ 2, even

just for the additive degree monoid D = Z. The knowledge of such a minimal generating set would
provide a way to decompose a multi-pattern as a syntax tree decorated by generators. This means
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we can parse a musical phrase into primitive parts. By using some algorithms coming from operad
theory, this would lead to applications such as the automatic discovery of repeated parts of musical
phrases (up to some elementary transformations like transpositions or more complex ones involving
rhythmic motives), or the compression of musical data.

Another perspective is to consider variations of the operad RP controlling the rhythmic part of the
multi-patterns. Such a variation can potentially produce very different results from the present ones
when used with bud generating systems. In the present work, the operad RP is constructed as the
image by the construction U of the additive monoid on N. It is envisaged to see if it is possible to use
other monoids and to what extent this can lead to new ways of composing rhythm patterns.
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