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Abstract

This article presents a benchmark study of symbolic piano music classification
using the masked language modelling approach of the Bidirectional Encoder
Representations from Transformers (BERT). Specifically, we consider two types
of MIDI data: MIDI scores, which are musical scores rendered directly into
MIDI with no dynamics and precisely aligned with the metrical grids notated
by their composers and MIDI performances, which are MIDI encodings of
human performances of musical scoresheets. With five public-domain datasets of
single-track piano MIDI files, we pre-train two 12-layer Transformer models using
the BERT approach, one for MIDI scores and the other for MIDI performances,
and fine-tune them for four downstream classification tasks. These include two
note-level classification tasks (melody extraction and velocity prediction) and two
sequence-level classification tasks (style classification and emotion classification).
Our evaluation shows that the BERT approach leads to higher classification
accuracy than recurrent neural network (RNN)-based baselines.

Keywords: Pre-trained model, Transformer, symbolic-domain music classification,
piano music, melody recognition, velocity prediction, style classification, emotion
classification

1 Introduction

In the literature on machine learning, a prominent approach to overcome the labelled data scarcity
issue is to adopt “transfer learning” and divide the learning problem into two stages (Han et al., 2021):
a pre-training stage that establishes a model capturing general knowledge from one or multiple
source tasks and a fine-tuning stage that transfers the captured knowledge to target tasks. Model
pre-training can be done in two ways: using a labelled dataset (Choi et al., 2018; J. Kim et al., 2019;
H.-H. Wu et al., 2021), such as training a VGG-like model over millions of human-labelled clips
of general sound events and then fine-tuning it on instrument classification (Gururani et al., 2019);
or using an unlabelled dataset with a self-supervised training strategy. The latter is in particular
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popular in the field of natural language processing (NLP), where pre-trained models (PTMs) using
Transformers (Vaswani et al., 2017) have achieved state-of-the-art results on almost all NLP tasks,
including generative and discriminative ones (Han et al., 2021).

This article presents an empirical study of applying PTMs to symbolic-domain piano music classifi-
cation tasks. In particular, inspired by the growing trend of treating MIDI music as a “language” in
deep generative models for symbolic music (C.-Z. A. Huang et al., 2019; Y.-S. Huang & Yang, 2020;
P. Lu et al., 2023; Payne, 2019; S.-L. Wu & Yang, 2023), we employ a Transformer-based network
pre-trained by a self-supervised training strategy called “masked language modelling” (MLM), which
has been widely used in BERT-like PTMs in NLP (Conneau & Lample, 2019; Devlin et al., 2019;
Joshi et al., 2020; Liu et al., 2019; Z. Yang et al., 2019). Despite the wide-scale adoption of BERT,
we are aware of only two publications that employ BERT-like PTMs for symbolic music classification
(Tsai & Ji, 2020; Zeng et al., 2021). The first work (Tsai & Ji, 2020) deals with optically scanned
sheet music, while we use MIDI inputs. The second work (Zeng et al., 2021) uses a diverse set of
multi-track MIDI files, while we intend to focus on piano music only. We discuss how our work
differs from these two existing works in more detail in Section 2.

We evaluate PTMs on four piano music classification tasks. These include two note-level classification
tasks, i.e., melody extraction (Y.-W. Hsiao & Su., 2021; Simonetta et al., 2019) and velocity prediction
(Jeong, Kwon, Kim, Lee, & Nam, 2019; Jeong, Kwon, Kim, & Nam, 2019; Widmer, 1994) and
two sequence-level classification tasks, i.e., style classification (S. Kim et al., 2020; Kong et al.,
2020) and emotion classification (Grekow & Raś, 2009; Y. Lin et al., 2013; Panda et al., 2013, 2018).
We use five datasets in this work, amounting to 4,166 pieces of piano MIDI. We give details of the
datasets and tasks in Sections 3 and 4.

As the major contribution of this article, we report a performance study of variants of PTM for this
diverse set of classification tasks, comparing the proposed approach (Section 6) with recurrent neural
network (RNN)-based baselines (Section 5). Results reported in Section 7 show that the “pre-train and
fine-tune” strategy does lead to higher accuracy than the RNN baselines. Moreover, we consider two
types of MIDI data and compare the performance of the resulting PTMs. Specifically, following Oore
et al. (2018), we differentiate two types of MIDI files, MIDI scores, which are musical scoresheets
rendered directly into MIDI with no dynamics and exactly according to the written metrical grid, and
MIDI performances, which are MIDI encodings of human performances of musical scoresheets. All
the 4,166 pieces we have are MIDI performances, but we can obtain the corresponding MIDI-score
version of them by dropping performance-related information. Accordingly, we build two PTMs, one
for MIDI scores and the other for MIDI performances and evaluate their performance respectively
on the downstream tasks. While the MIDI-score version can be applied to a wider array of tasks
involving those with or without performance-related information, the MIDI-performance version
can likely perform better for tasks that involve human performance of piano scores, such as style
classification and emotion classification. Therefore, such a performance comparison is relevant.

As the secondary contribution, we share the code and release checkpoints of the pre-trained and
fine-tuned models publicly in our GitHub repository2 with an open-source licence. Together with the
fact that all the datasets employed in this work are publicly available, our research can be taken as a
new testbed of PTMs in general and a new public benchmark for machine learning-based classification
of MIDI music.

2 Related Work on Pre-trained Models for MIDI

Machine learning has been applied to music in symbolic formats such as MIDI. Exemplary tasks
include symbolic-domain music genre classification (Correa & Rodrigues, 2016; Ferraro & Lemstrom,
2018), composer classification (S. Kim et al., 2020; Kong et al., 2020) and melody note identification
(Y.-W. Hsiao & Su., 2021; Simonetta et al., 2019). However, labelled datasets for symbolic-domain
music data tend to be small in size in general (Hamanaka et al., 2014; Harasim et al., 2020; Simonetta
et al., 2019), posing challenges to train effective supervised machine learning models that generalise
well.

To our best knowledge, the work of Tsai and Ji (2020) represents the first attempt to use PTMs
for symbolic-domain music classification. They showed that either a RoBERTa-based Transformer

2https://github.com/wazenmai/MIDI-BERT
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Table 1: Public datasets used for this article. All the datasets are used for pre-training, while three are
also used for downstream classification tasks. Average note pitch is in MIDI number. The symbol “#”
stands for “number of”.

Dataset Downstream Classifi- Pieces Duration Avg. note Avg. note Avg. #notes Avg. #bars
cation (CLS) Tasks (hours) pitch duration (in ˇ “* ) per bar per piece

Pop1K7 - 1,747 108.8 E4 8.5 16.9 103.3
ASAP4/4 - 65 3.5 D4# 2.9 23.0 95.9
POP9094/4 melody, velocity 865 59.7 D4# 6.1 17.4 94.9
Pianist8 style 411 31.9 D4# 9.6 17.0 108.9
EMOPIA emotion 1,078 12.0 C4# 10.0 17.9 14.8

encoder PTM (Liu et al., 2019) or a GPT2-based Transformer encoder PTM (Radford et al., 2019)
outperforms non-pre-trained baselines for a 9-class symbolic-domain composer classification task.
Pre-training boosts the classification accuracy for the GPT2 model greatly from 46% to 70%. However,
the symbolic data format considered in their work is “sheet music image” (Tsai & Ji, 2020), which
are images of musical scores. This data format has been much less used than MIDI in the literature.

Zeng et al. (2021) presented MusicBERT, a PTM tailored for symbolic MIDI data. MusicBERT was
trained on a non-public dataset of over one million multi-track MIDI pieces. The authors showcased
the efficacy of MusicBERT by applying it to two generative music tasks, melody completion and
accompaniment suggestion and two sequence-level discriminative tasks, including genre and style
classification. In comparison to non PTM-based baselines, MusicBERT consistently led to better
performance. Our work differs from theirs in the following aspects. First, our pre-training corpus is
much smaller (only 4,166 pieces) but all publicly available, less diverse but more dedicated (to piano
music). Second, we aim at establishing a benchmark for symbolic music classification and include
not only sequence-level but also note-level tasks. Furthermore, the labelled data we employ for our
downstream tasks is comparatively modest, with each dataset containing fewer than 1,000 annotated
pieces. This differs from MusicBERT’s dataset, referred to as the TOP-MAGD dataset (Ferraro
& Lemstrom, 2018), which comprises over 20,000 annotated pieces—a considerably extensive
collection rarely encountered in symbolic music tasks. Finally, their token representation is designed
for multi-track MIDI, while ours is for single-track piano MIDI, each MIDI file is an individual
movement of a longer work.

3 Datasets and Data Representation

3.1 Piano MIDI Datasets

We collected four existing public-domain piano MIDI datasets, including Pop1K7, ASAP, POP909,
EMOPIA and compiled a new dataset, named Pianist8. To simplify the token representation, we
consider only MIDI files that specify 4/4 metre.3 We list some important statistics of these five
datasets in Tab. 1 and provide their details below.

• The Pop1K7 dataset developed by W.-Y. Hsiao et al. (2021)4 is composed of machine
transcriptions of 1,747 audio recordings of piano covers (i.e., a new recording by someone
other than the original artist or composer of a commercially released song) of Japanese
anime, Korean and Western pop music, amounting to over 100 hours worth of data. The
transcription was done with the “onsets-and-frames” RNN-based piano transcription model
(Hawthorne et al., 2018) (which is reported to attain a 95.32and the RNN-based downbeat
and beat tracking model from the Madmom library (Böck et al., 2016). This dataset is the
largest among the five, constituting half of our training data. We only use it for pre-training.

• ASAP, the aligned scores & performances dataset compiled by Foscarin et al. (2020), 5

contains 1,068 MIDI performances of 222 Western classical music compositions from
3We note that the metre can be wrong due to errors in automatic music transcription, leading to noise in the

data. Future work can be done to improve this. Moreover, future work can be done to use a more complicated
token representation such as that proposed by Pati et al. (2019) to include other time signatures.

4https://github.com/YatingMusic/compound-word-transformer
5https://github.com/fosfrancesco/asap-dataset
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15 composers, along with the MIDI performances of the 222 pieces compiled from the
MAESTRO dataset (Hawthorne et al., 2019). We consider it as an additional dataset for
pre-training, using only the MIDI that specifies 4/4 metre with no metre change at all
throughout the piece. This leaves us with 65 pieces of MIDI files, which last for 3.5 hours
in total. Tab. 1 shows that, being the only classical dataset among the five, ASAP features
shorter average note duration and larger number of notes per bar.

• POP909 comprises piano covers of 909 pop songs compiled by Wang et al. (2020).6 It
is the only dataset among the five that provides melody, non-melody labels for each note.
Specifically, each note is labelled with one of the following three classes: vocal melody
(piano notes corresponding to the lead vocal melody line in the original pop song, usually
during the verse and chorus parts); instrumental melody (piano notes corresponding to
the secondary melody line played by the instruments in the original pop song, usually during
the intro, bridge, outro parts); and accompaniment (including arpeggios, broken chords
and many other textures).7 As it is a MIDI performance dataset, it also comes with velocity
information. Therefore, we use it for the melody classification and velocity prediction tasks.
We discard pieces that do not specify 4/4 metre, ending up with 865 pieces for this dataset.

• Pianist8 consists of eight artists’ performances of piano music that we downloaded from
YouTube for training and evaluating symbolic-domain style classification.8 The artists
are Richard Clayderman (pop), Yiruma (pop), Herbie Hancock (jazz), Ludovico Einaudi
(contemporary), Hisaishi Joe (contemporary), Ryuichi Sakamoto (contemporary), Bethel
Music (religious) and Hillsong Worship (religious). The artists are also the composers of the
pieces, except for Richard Clayderman, Bethel Music and Hillsong Worship. The dataset
contains a total of 411 pieces, with a fairly balanced number of pieces per artist. Each
audio file is paired with its MIDI performance, which is machine-transcribed by the piano
transcription model proposed by Kong et al. (2021).

• EMOPIA is a dataset of pop piano music collected recently by Hung et al. (2021) from
YouTube for research on emotion-related tasks.9 It has 1,087 clips (each around 30 seconds)
segmented from 387 songs, covering Japanese anime, Korean & Western pop song covers,
movie soundtracks and personal compositions. The emotion of each clip has been labelled
using the following 4-class taxonomy: HAHV (high arousal high valence); LAHV (low arousal
high valence); HALV (high arousal low valence); and LALV (low arousal low valence). This
taxonomy is derived from Russell’s valence-arousal model of emotion (Russell, 1980), where
valence indicates whether the emotion is positive or negative and arousal denotes whether
the emotion is high (e.g., angry) or low (e.g., sad) (Y.-H. Yang & Chen, 2011). The MIDI
performances of these clips are similarly machine-transcribed from the audio recordings by
the model of Kong et al. (2021). We use this dataset for the emotion classification task. As
Tab. 1 shows, the average length of the pieces in the EMOPIA dataset is the shortest among
the five, since they are actually clips manually selected by dedicated annotators (Hung et al.,
2021) to ensure that each performance expresses a single emotion.

All five datasets consist of MIDI performances. As mentioned in the introduction, we intend to build
two PTMs, one for MIDI scores and the other for MIDI performances. We obtain the MIDI-score
version of each performance by dropping velocity and tempo information, temporally quantising the
onset time and duration of each the notes to a semiquaver resolution.

3.2 Token Representation

Similar to text, a piece of music in MIDI can be considered as a sequence of musical events or
“tokens”. However, what makes music different is that musical notes are associated with a temporal
length (i.e., note duration) and multiple notes can be played at the same time. Therefore, to represent
music, we need note-related tokens describing, for example, the pitch and duration of the notes, as
well as metric-related tokens placing the notes over a time grid.

6https://github.com/music-x-lab/POP909-Dataset
7POP909 originally refers to vocal melody as melody and instrumental melody as bridge in their

work (Wang et al., 2020). We opt for our new naming to highlight the fact that the latter is also a type of melody.
8https://zenodo.org/record/5089279
9https://annahung31.github.io/EMOPIA/

4

https://github.com/music-x-lab/POP909-Dataset
https://zenodo.org/record/5089279
https://annahung31.github.io/EMOPIA/


Figure 1: An example of a piece of score encoded using the proposed simplified version of the (a)
REMI and (b) CP representations, using seven types of tokens, Bar, Sub-bar, Pitch, Velocity,
Duration, Tempo and Pad (not shown here), for piano-only MIDI performance. The text inside
parentheses indicates the value each token takes. While each time step corresponds to a single token
in REMI, each time step would correspond to a super token that assembles four tokens in total in CP.
Without such a token grouping, the sequence length (in terms of the number of time steps) of REMI
is longer than that of CP (in this example, 16 versus 4). Please note that the actual scores employed
in our work are not as simple as this example as they are polyphonic.

In the literature, a variety of token representations for MIDI have been proposed, differing in many
aspects such as the MIDI data being considered (e.g., melody (Waite et al., 2016), lead sheet (S.-L.
Wu & Yang, 2020), piano (C.-Z. A. Huang et al., 2019) and multi-track music (Dong et al., 2023;
Payne, 2019)), the temporal resolution of the time grid and the way the advancement in time is
notated (Y.-S. Huang & Yang, 2020). Auxiliary tokens describing, for example, the chord progression
(Y.-S. Huang & Yang, 2020) or grooving pattern (Chen et al., 2020) underlying a piece can also be
added.

In this work, we adopt the beat-based REMI token representation proposed by Y.-S. Huang and Yang
(2020) to place musical notes over a discrete time grid comprising 16 equidistant sample points per
bar. In addition to REMI, we experiment with the “token grouping” idea of the compound word (CP)
representation (W.-Y. Hsiao et al., 2021), to reduce the length of the token sequences. We depict the
two adopted token representations in Fig. 1 and provide some details below.

3.2.1 REMI Token Representation

The REMI representation (Y.-S. Huang & Yang, 2020) for MIDI performances uses Bar and Sub-bar
tokens to represent the advancement in time. The former marks the beginning of a new bar, while the
latter points to a discrete position within a bar. Specifically, as we divide a bar into 16 equidistant
sample points, the Sub-bar tokens can take values from 1 to 16; e.g., Sub-bar(1) indicates the
position corresponding to the first sample point in a bar, i.e., the first beat in 4/4 time signature,
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whereas Sub-bar(9) indicates the third beat.10 As depicted in Fig. 1(a), we use a Sub-bar token
before each musical note, which comprises two consecutive tokens of Pitch and Duration. In other
words, the Sub-bar token indicates the onset time of a note played at a certain MIDI pitch (i.e., the
value taken by the Pitch token), whose duration is indicated by the Duration token, in multiples of
demisemiquavers. For example, Duration(1) and Duration(32) correspond to a thirty-second
note and a whole note, respectively. For MIDI performances, a musical note is represented by not
only Pitch and Duration tokens but also a Velocity token that indicates how hard this note was
pressed by key. Moreover, we use the Tempo token to specify the tempo information of the songs. It
is placed behind the Sub-bar token to imply when the song would perform with the tempo. We only
add the tempo token at the beginning of the song and the timing when tempo changes. For MIDI
scores, the Velocity and Tempo tokens are simply dropped.

3.2.2 CP Token Representation

Fig. 1(a) shows that, except for Bar, the other tokens in a REMI sequence always occur consecutively
in groups, in the order of Sub-bar, Pitch, Duration. We can further differentiate Bar(new) and
Bar(cont), representing respectively the beginning of a new bar and a continuation of the current
bar and always have one of them before a Sub-bar token. This way, the tokens would always occur
in a group of four for MIDI scores. For MIDI performances, six tokens would be grouped together,
including Velocity and Tempo. Following the logic of Bar, if there is no tempo change, we simply
repeat the tempo value. Instead of feeding the token embedding of each of them individually to the
Transformer, we can combine the token embedding of either the four tokens for MIDI scores or six
tokens for MIDI performances in a group by concatenation and let the Transformer model process
them jointly, as depicted in Fig. 1(b). We can also modify the output layer of the Transformer so that
it predicts multiple tokens at once with different heads. These constitute the main ideas of the CP
representation (W.-Y. Hsiao et al., 2021), which has at least the following two advantages over its
REMI counterpart: 1) the number of time steps needed to represent a MIDI piece is much reduced,
since the tokens are merged into a “super token” (a.k.a. a “compound word” (W.-Y. Hsiao et al.,
2021)) representing four tokens at once; 2) the self-attention in Transformer is operated over the super
tokens, which might be musically more meaningful as each super token jointly represents different
aspects of a musical note. Therefore, we experiment with both REMI and CP in our experiments.

3.2.3 On Zero-padding

To train Transformers, it is required that all input sequences have the same length. For both REMI and
CP, we divide the token sequence for each entire piece into a number of shorter sequences with equal
sequence length 512, zero-padding those at the end of a piece to 512 with an appropriate number
of Pad tokens. Because of the token grouping, a CP sequence for the Pop1K7 dataset would cover
around 25 bars on average, whereas a corresponding REMI sequence covers only 9 bars on average.

For MIDI scores, our final token vocabulary for REMI contains 16 unique Sub-bar tokens, 86
Pitch tokens, 64 Duration tokens, one Bar token, one Pad token and one Mask token, in total 169
tokens. For CP, we do not use a Pad token but represent a zero-padded super token by Bar(Pad),
Sub-bar(Pad), Pitch(Pad) and Duration(Pad). We do similarly for a masked super token,
using Bar(Mask), etc. We need an additional bar-related token Bar(cont) for CP, so the vocabulary
size for CP is 169−2+8+1=176. For MIDI performances, the vocabulary sizes are 299 and 310
using the REMI and CP representations, respectively.

4 Task Specification

Throughout this article, we refer to note-level classification tasks as tasks that perform a prediction
for each individual note in a music sequence and sequence-level tasks as tasks that require a single
prediction for an entire music sequence. We consider two note-level tasks and two sequence-level
tasks in our experiments, as elaborated below.

10We note that Y.-S. Huang and Yang (2020) originally referred to such Sub-bar tokens as Position tokens,
while Shih et al. (2022) and S.-L. Wu and Yang (2023) call them Sub-beat tokens. We prefer our naming for it
is musically more accurate—our Sub-bar tokens are subdivisions of a bar (i.e., dividing a bar into 16 points),
not subdivisions of a beat (i.e., not dividing a beat into 16 points).
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4.1 Symbolic-domain Melody Extraction

For symbolic-domain melody extraction, initial methodologies predominantly adopted rule-based
approaches. These rule-based methods encompassed techniques such as utilising pitch contour
characteristics (Salamon & Gomez, 2012), as well as the implementation of the “skyline" algorithm
(Chai & Vercoe, 2001). In recent years, deep learning-based approaches utilising convolutional neural
networks (CNN) have been adopted (Y.-W. Hsiao & Su., 2021; Simonetta et al., 2019), We will
review such CNN-based methods in Section 5, highlighting their specific details and implementation.
Similar to Simonetta et al. (2019), we regard melody extraction as a task that identifies the melody
notes in single-track 11 homophonic or polyphonic music. Utilising the POP909 dataset of Wang
et al. (2020), we can develop a model that classifies each Pitch event into vocal melody, instrumental
melody or accompaniment, with classification accuracy (ACC) serving as the evaluation metric.12

Specifically, we consider two formulations of the task. Firstly, we adhere to the original configuration
of POP909 and perform three-class melody classification, classifying each Pitch into three categories:
vocal melody, instrumental melody or accompaniment. Secondly, we merge vocal melody and
instrumental melody into a general "melody" category (while accompaniment is designated as
"non-melody") and perform two-class classification. Doing so allows for a direct comparison with
established baselines, such as the skyline algorithm and the baseline introduced in Section 5. For
detailed results and a thorough examination, please refer to Section 7.1.

4.2 Symbolic-domain Velocity Prediction

Dynamics is an important element in music, as they are often used by musicians to add excitement
and emotion to songs. Given that the tokens we choose do not contain performance information, it is
interesting to see how a machine model would “perform” a piece by deciding these volume changes,
a task that is essential in performance generation (Jeong, Kwon, Kim, Lee, & Nam, 2019; Jeong,
Kwon, Kim, & Nam, 2019; Widmer, 1994) or expressive performance modelling (Friberg et al.,
2006; Friberg et al., 2007). In the realm of MIDI, velocity is a parameter that scales the intensity or
volume at which a sound sample is played back, with the value ranging from 0 to 127. Default MIDI
velocity values are associated with dynamic indications. Apple’s Logic Pro 9 user manual correlates
traditional volume indicators (pp, p, mp, mf, f, ff and fff) with specific MIDI velocity values (16,
32, 48, 64, 80, 96, 112 and 127), respectively.13 In our work, we define and classify this information
into six categories: pp (0–31), p (32–47), mp (48–63), mf (64–79), f (80–95) and ff (96–127). Our
definition aligns with the Logic Pro 9 specifications, except that we treat fff as equivalent to ff. Our
objective can be treated as a note-level classification task, aiming to classify Pitch events into six
classes using the POP909 dataset (Wang et al., 2020).

4.3 Symbolic-domain Style Classification

Genre classification (Correa & Rodrigues, 2016) can be considered as a type of style classification.
While genre classification categorises music based on shared musical attributes and conventions, style
classification seeks to capture the nuanced stylistic variations within either a specific genre, composer
or performer, accounting for the diverse artistic choices and performance practices that shape musical
expressions. We could relatively easily find out which type of music we are listening to based on
the similar patterns in that genre, while needing more musical insights to recognise the composer’s
or performer’s style. Deep learning-based composer classification in MIDI has been attempted by
S. Kim et al. (2020) and Kong et al. (2020), both treating MIDI pieces as 2D-representation matrices
(via the piano-roll representation) and using CNN classifiers. Our work differs from theirs in that: 1)
we encode MIDI pieces as token sequences, 2) we employ PTM, 3) we consider non-classical music

11It is common for MIDI files to consist of multiple tracks. We refer to “single-track" as MIDI files containing
only one track, which is in contrast to multi-track MIDI files that have multiple tracks.

12We note that there is a task closely related to melody extraction, called melody track identification. The goal
of this task is to distinguish the melody track from other non-melody tracks present in a multi-track MIDI file
(Jiang & Dannenberg, 2019; Madsen & Widmer, 2007). While melody extraction is a note-level classification
task, melody track identification is a track-level task. The latter is also an important symbolic music classification
task, but we do not consider it here for we exclusively focus on piano-only data.

13https://help.apple.com/logicpro/mac/9.1.6/en/logicpro/usermanual/ (page 468 in the user manual; accessed
2023-06-22)
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pieces and 4) our task is about style classification because not all the pianists in Pianist8 composed
the pieces they performed.

4.4 Symbolic-domain Emotion Classification

Emotion classification in MIDI has been approached by a few researchers, mostly using hand-crafted
features and non-deep learning classifiers (Grekow & Raś, 2009; Y. Lin et al., 2013; Panda et al.,
2013, 2018). Some researchers work on MIDI alone, while others use both audio and MIDI in
multi-modal emotion classification (Panda et al., 2013). The only deep learning-based approach we
are aware of is presented by Hung et al. (2021), using an RNN-based classifier called “Bi-LSTM-Attn”
(Z. Lin et al., 2017) but without employing PTMs, which is also used as a baseline in our experiment;
see Section 5.

5 Baseline Model

For the note-level classification tasks, we use an RNN model as our baseline that consists of three
bi-directional long short-term memory (Bi-LSTM) layers, each with 256 neurons and a feed-forward
layer for classification, since such a network has led to state-of-the-art result in many audio-domain
music classification tasks, like beat tracking (Böck et al., 2016; Chiu et al., 2021) and pitch estimation
(Hawthorne et al., 2018). All of our downstream tasks can be viewed as a multi-class classification
problem. Given a REMI sequence, a Bi-LSTM model makes a prediction for each Pitch token,
ignoring all the other types of tokens (i.e., Bar, Sub-bar, Duration and Pad). For CP, the Bi-LSTM
model simply makes a prediction for each super token, again ignoring the zero-padded ones.

For the sequence-level tasks, which require only a prediction for an entire sequence, we follow Hung
et al. (2021) and choose the Bi-LSTM-Attn model from Z. Lin et al. (2017) as our baseline, which
was originally proposed for sentiment classification in NLP. The model combines LSTM with a self-
attention module for temporal aggregation. Specifically, it uses a Bi-LSTM layer to convert the input
sequence of tokens into a sequence of embeddings, which can be considered as feature representations
of the tokens and then fuses these embeddings into one sequence-level embedding according to
the weights assigned by the attention module to each token-level embedding. The sequence-level
embedding then goes through two dense layers for classification. We use the token-level embedding
for all the tokens here.

For melody extraction, we implement additionally the skyline algorithm (Chai & Vercoe, 2001) and a
CNN-based method (Simonetta et al., 2019) for performance comparison. The skyline algorithm can
only perform “melody versus non-melody” two-class classification for it cannot distinguish between
vocal melody and instrumental melody—it uses the simple rule of taking the note with the highest
pitch among the concurrent notes as the melody, while avoiding temporally overlapping notes (Chai
& Vercoe, 2001).

The CNN method (Simonetta et al., 2019) uses piano-roll, a 2D representation where the x-axis
represents symbolic time and the y-axis represents pitch, to represent MIDI. Their CNN learns to
predict the probability that each note belongs to the melody line. Then, a clustering algorithm is
used to find a threshold for each piece adaptively. Finally, the Bellman-Ford algorithm is adopted to
pick a strictly monophonic melody line. In contrast, we do not have postprocessing steps such as
thresholding or clustering in our BERT-based model and the RNN baseline.

The source code for Simonetta’s model (Simonetta et al., 2019) is available online14 but we make
the following modifications to improve the model’s performance: we use binary cross-entropy loss
instead of mean error loss, sigmoid rather than ReLU activations, an Adam optimizer with learning
rate 1e-4 and dropout to prevent overfitting. We share the re-implemented version online.15

As an additional baseline for style and emotion classification, we implemented the ResNet50-
based CNN model from S. Kim et al. (2020), which represents the state-of-the-art for composer
classification, based on the authors’ code.16

14https://github.com/LIMUNIMI/Symbolic-Melody-Identification
15https://github.com/sophia1488/symbolic-melody-identification
16https://github.com/KimSSung/Deep-Composer-Classification
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Figure 2: Illustration of the (a) pre-training procedure of our model for a CP sequence, where the
model learns to predict (reconstruct) randomly-picked super tokens masked in the input sequence
(each consisting of four tokens, as the example one shown in the middle with time step t); and (b), (c)
the fine-tuning procedure for note-level and sequence-level classification. Apart from the last few
output layers, both pre-training and fine-tuning use the same architecture.

6 BERT Pre-training and Fine-tuning

We now present our PTM, a pre-trained Transformer encoder with 111 million parameters for piano
MIDI music. We adopt as the model backbone the BERTBASE model (Devlin et al., 2019), a classic
multi-layer bi-directional Transformer encoder with 12 layers of multi-head self-attention, each with
12 heads and the dimension of the hidden space of the self-attention layers being 768. Below, we first
describe the pre-training strategy, then the fine-tuning method for the downstream tasks.

6.1 Pre-training

For PTMs, an unsupervised or self-supervised, pre-training task is needed to set the objective function
for learning. We employ the masked language modelling (MLM) pre-training strategy of BERT,
randomly masking 15% tokens of an input sequence and the Transformer will reconstruct these
masked tokens from the context of the visible tokens by minimising the cross-entropy loss. As a
self-supervised method, MLM needs no labelled data relating to the downstream tasks for pre-training.
Following BERT, among all the masked tokens, we replace 80% by MASK tokens, 10% by a randomly
chosen token and leave the last 10% unchanged. Doing so has the effect of helping mitigate the
mismatch between pre-training and fine-tuning as MASK tokens do not appear at all during fine-tuning.
For REMI, we mask the individual tokens at random. For CP, we mask the super tokens—when we
mask a super token, we have to reconstruct all the four tokens composing it by different output heads
(W.-Y. Hsiao et al., 2021), as shown in Fig. 2(a).

There are three steps for processing the input token. First, each input token Xi is converted into a
token embedding Ei through an embedding layer. Second, it is augmented by addition with a relative
positional encoding (Z. Huang et al., 2020) that is related to its time step. Third, it is then fed Ei to
the stack of 12 self-attention layers to get a “contextualised” representation known as a hidden vector
at the output of the self-attention stack. Because of the bi-directional self-attention layers, the hidden
vector is contextualized in the sense that it has attended to information from all the other tokens
from the same sequence. Finally, the hidden vector of a masked token is fed into a dense layer to
predict what the missing super token is. As our network structure is rather standard, we refer readers
to the literature (Devlin et al., 2019; Vaswani et al., 2017; S.-L. Wu & Yang, 2023) for details and
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the mathematical underpinnings due to space limits. Because the vocabulary sizes for the four token
types are different, we weight the training loss associated with tokens of different types in proportion
to the corresponding vocabulary size of REMI and CP, to facilitate model training.

We note that the original BERT article also used another self-supervised task called “next sentence
prediction” (NSP) (Devlin et al., 2019) together with MLM for pre-training. We do not use NSP
for our model since it was later shown to be not that useful (Conneau & Lample, 2019; Joshi et al.,
2020; Z. Yang et al., 2019); moreover, NSP requires a clear definition of “sentences”, which is not
well-defined for our MIDI sequences. As a result, we do not use tokens such as CLS, SEP and EOS
used by BERT for making the boundary of the sentences.17

6.2 Fine-tuning

It has been widely shown in NLP and related fields (Brandes et al., 2022; Y.-S. Chuang et al., 2020;
J. Lu et al., 2019; Sun et al., 2019) that, by storing knowledge in huge numbers of parameters and
carrying out task-specific fine-tuning, the knowledge implicitly encoded in the parameters of a PTM
can be transferred to benefit a variety of downstream tasks (Han et al., 2021). For fine-tuning, we
extend the architecture shown in Fig. 2(a) by modifying the last few layers in two different ways, one
for each of the two types of downstream tasks.

Fig. 2(b) shows the fine-tuning architecture for note-level classification. While the Transformer uses
the hidden vectors to recover the masked tokens during pre-training, it has to predict the label of
an input token during fine-tuning, by learning from the labels provided in the training data of the
downstream task in a supervised way. To achieve this, we feed the hidden vectors to a stack of dense
layers, a ReLU activation layer and finally another dense layer for the output classification, with 10%
dropout probability. We note that this classifier design is fairly simple, as we expect much knowledge
regarding the downstream task can already be extracted from the preceding self-attention layers.

Fig. 2(c) shows the fine-tuning architecture for sequence-level classification. Being inspired by
the Bi-LSTM-Attn model (Z. Lin et al., 2017), we employ an attention-based weighting average
mechanism to convert the sequence of 512 hidden vectors for an input sequence to one single vector
before feeding it to the classifier layer, which comprises two dense layers. We note that, unlike the
baseline models introduced in Section 5, we do not use RNN layers in our models. An alternative
approach is to add the CLS token to our sequences and simply use its hidden vector as the input to the
classifier layer. We do not explore this alternative since we do not have CLS tokens.

6.3 Implementation Details

Our implementation is based on the open-source library HuggingFace (Wolf et al., 2020). As
mentioned in Section 3.1, we use Pop1K7 and ASAP for pre-training and the other three datasets (i.e.,
POP909, Pianist8 and EMOPIA) for the downstream tasks. From the combination of Pop1K7 and
ASAP, we use 85% of them for pre-training as described in Section 6.1 and the rest as the validation
set. We train with a batch size of 12 sequences for at most 500 epochs (i.e., around 500K iterations
for REMI and 1M iterations for CP), using the AdamW optimizer with learning rate 2e−5 and weight
decay rate 0.01. If the validation cross-entropy loss does not improve for 30 consecutive epochs, we
stop the training process early. For pre-training, we can improve the validation “cloze” accuracy
from 70.4% for REMI to 78.73% for CP. We observe that pre-training using the CP representation
converges in 2.5 days on four GeForce GTX 1080-Ti GPUs, which is about 2.5 times faster than the
case of REMI. Moreover, a smaller batch size degrades overall performance, including downstream
classification accuracy. Because each sequence has 512 super tokens, we have 6,144 super tokens per
batch.

For fine-tuning, we create training, validation and test splits for each of the three datasets of the
downstream tasks with a 8:1:1 ratio at the piece level (i.e., all the 512-token sequences from the same
piece are in the same split). With the same batch size of 12, we fine-tune our pre-trained model for
each task independently for at most 10 epochs, stopping early when there is no improvement for three
consecutive epochs. Compared to pre-training, fine-tuning is less computationally expensive. All the

17CLS marks the beginning of a sentence, SEP the boundary between two consecutive sentences (useful for
the so-called “next sentence prediction task” (Devlin et al., 2019)) and EOS the end of a sentence.
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Table 2: The testing classification accuracy (in %) of different combinations of MIDI token represen-
tations and models for four downstream tasks: three-class melody classification, velocity prediction,
style classification and emotion classification. “CNN” represents the ResNet50 model used by S.
Kim et al. (2020), which only supports sequence-level tasks. “RNN” denotes the baseline models
introduced in Section 5, representing the Bi-LSTM model for the first two (note-level) tasks and the
Bi-LSTM-Attn model (Z. Lin et al., 2017) for the last two (sequence-level) tasks.

Token Model Melody Velocity Style Emotion

REMI

CNN (S. Kim et al., 2020) — — 51.35 60.00
RNN (Z. Lin et al., 2017) 89.96 44.56 51.97 53.46
Our model (score) 90.97 49.02 67.19 67.74
Our model (performance) 89.23 — 75.30 66.18

CP

CNN (S. Kim et al., 2020) — — 67.57 60.00
RNN (Z. Lin et al., 2017) 88.66 43.77 60.32 54.13
Our model (score) 96.15 52.11 67.46 64.22
Our model (performance) 95.83 — 81.75 70.64

OctupleMIDI MusicBERT (Zeng et al., 2021) — — 37.25 77.78

results reported in our work can be reproduced with four GeForce GTX 1080-Ti GPUs within 30
minutes.

In our experiments, we used the same pre-trained model parameters to initialise the models for
different downstream tasks. During fine-tuning, we fine-tune the parameters of all the layers,
including the self-attention and token embedding layers.

7 Performance Study

In what follows, we use “our model (score)” to indicate the result when MIDI scores are considered
and similarly “our model (performance)” for MIDI performances. Since MIDI performance contains
velocity information, we do not evaluate on the velocity prediction task for fairness. We note that,
while “our model (score)” and “our model (performance)” adopt different token representations,
we consider it valid to compare their performance as their training and test data are respectively from
the same sets of music pieces.

Tab. 2 lists the testing accuracy achieved by the baseline models and the proposed ones for four
downstream tasks. We see that “our model (score)” outperforms the Bi-LSTM or Bi-LSTM-
Attn baselines in all tasks consistently, using either the REMI or CP representation. In particular,
the combination of our model (score) and CP, referred to as “our model (score)+CP” hereafter,
exhibits the highest accuracy in the two note-level tasks. Additionally, the combination of our model
(performance) and CP, denoted as “our model (performance)+CP”, achieves the best result in the
style classification task, while demonstrating a notable improvement in accuracy compared to REMI
for emotion classification. We also observe that our models outperform Bi-LSTM+CP with just 1 or
2 epochs of fine-tuning, validating the strength of PTMs on symbolic-domain music classification
tasks.

To facilitate a comprehensive evaluation, we additionally incorporate an officially released version of
MusicBERT (Zeng et al., 2021) in the sequence-classification tasks. Specifically, we use the model
checkpoint MusicBERT-small,18 which is pre-trained on the Lakh MIDI (LMD) dataset (Raffel &
Ellis, 2018), which contains about 100K songs.19 The results show that MusicBERT achieves a
testing accuracy of 37.25% for style classification and 77.78% for emotion classification. Specifically,
in the style classification task, MusicBERT exhibits clear signs of overfitting and falls short in
performance when compared to our model (81.75%). This outcome can be attributed to the limited
size of the Pianist8 dataset, comprising only 411 songs. Conversely, in the emotion classification task,

18https://github.com/microsoft/muzic/tree/main/musicbert
19There is another implementation named MusicBERT-base, which is trained on the Million MIDI Dataset

(Zeng et al., 2021), which is ten times larger than LMD.
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(a) Bi-LSTM + CP (b) Our model (score) + CP (c) Our model (performance) + CP 

M1
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M1            M2              A M1            M2              A  M1          M2              A

Figure 3: Confusion tables (in %) for two models for three-class melody classification, calculated
on the test split of POP9094/4. Each row represents the percentage of notes in an actual class while
each column represents a predicted class. Notation—“M1”: vocal melody, “M2”: instrumental
melody, “A”: accompaniment.

Table 3: Testing metrics (in %) of “our model (performance) +CP” and other baseline methods for the
two-class “melody versus non-melody” classification task using POP909, viewing vocal melody
and instrumental melody as “melody” and accompaniment as “non-melody”.

Model Accuracy Precision Recall F1

Skyline (Chai & Vercoe, 2001) 79.52 81.42 56.57 66.76
Simonetta et al.’s CNN (Simonetta et al., 2019) 92.08 88.95 89.30 89.13
Our model (performance) + CP 99.06 98.68 98.72 98.70

MusicBERT demonstrates impressive performance, surpassing our model (70.64%) by a significant
margin. This finding is intriguing and suggests that the application of large-scale pre-training may
yield substantial benefits in classifying the emotional content of a MIDI piece.

Tab. 2 also shows that the CP token representation tends to outperform the REMI one across different
tasks for both the baseline models and the PTM-based models, demonstrating the importance of token
representation for music applications. To study whether the accuracy gain comes simply from a longer
musical context enjoyed by CP, we also train “our model (performance)+CP” with a sequence
of length 128, obtaining 95.43, 80.32 and 64.04 accuracies for three-class melody classification,
style classification and emotion classification, respectively. We note a sequence of length 512 for
REMI contains approximately the same amount of information for a sequence of 147 supertokens
for CP. Still, using the CP token representation in general leads to better performance even with less
information.

Tab. 2 also shows that “our model (performance)+CP” outperforms “our model (score)+CP”
greatly for the two sequence-level tasks, style classification and emotion classification. This matches
our intuition as the two tasks are highly related to performance styles and expressions of the piano
pieces.

We take a closer look at the performance of the evaluated models, in particular Bi-LSTM+CP (or
Bi-LSTM-Attn+CP), “our model (score)+CP” and “our model (performance)+CP” in different
tasks in what follows.

7.1 Melody

Fig. 3 presents the normalised confusion tables for three-class melody classification, illustrating
distinct performance characteristics among the models. We note that the baseline exhibits a tendency
to conflate vocal melody (M1) and instrumental melody (M2), whereas our model outperforms the
RNN-based model, enhancing the overall accuracy by almost 8% (from 88.66% to 96.15%). A closer
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Figure 4: The melody/non-melody classification result for “POP909-596.mid” by (b) “skyline” (Chai
& Vercoe, 2001), (c) Simonetta et al.’s CNN (Simonetta et al., 2019) and (d) our model (performance)
+ CP. Directing attention to the red circled region within the pianoroll representation, it is evident that
the CNN baseline faces challenges in effectively distinguishing between melody and accompaniment,
particularly when note pitches reside within the C4 to C5 range during the initial phase. This is
especially pronounced in low-pitch scenarios, where the CNN baseline struggles with accurate
classification. In contrast, our model exhibits a notably improved predictive accuracy, closely aligning
with the ground truth representation. To supplement this information , the generated melody audio
files and pianoroll figures are available in our repository.

examination reveals our model’s superior ability to differentiate between vocal and instrumental
melodies compared to the RNN baseline with minimal finetuning. This task is particularly challenging
given the nature of the POP909 dataset, which exclusively features pop songs sung by humans.
Consequently, the separation of vocal and instrumental melodies relies on the criterion of human
vocalisation (which is absent in MIDI data), potentially leading to instances where notes between
phrases are designated as instrumental melody despite sharing pitch and melodic characteristics with
vocal melody.

Interestingly, an intriguing observation emerges as “our model (score) + CP” demonstrates a more
effective distinction between vocal and instrumental melodies than “our model (performance) + CP”.
This phenomenon suggests that even without velocity information, our model can discern segments
designated for singing versus those serving as preludes, interludes or fills.

Tab. 3 compares our model with the “skyline” algorithm (Chai & Vercoe, 2001) and the CNN-
based baselines (Simonetta et al., 2019) for the two-class “melody versus non-melody” melody
classification task. As the dataset is highly unbalanced (i.e., the melody notes are much fewer than
the accompaniment notes), we also report the precision, recall and F1 scores. It turns out that our
model greatly outperforms other baselines across all the metrics, reaching 99.04% classification
accuracy. A qualitative example demonstrating the superiority of the proposed model over the the
skyline algorithm can be found in Fig. 4, using a randomly chosen testing piece from POP9094/4.

Moreover, we have extended the application of our melody extraction model to compositions from
the Pianist8 dataset. Given the absence of manual labels for melody notes within this dataset,

13



(a) Bi-LSTM + CP (b) Our model (score) + CP

Figure 5: Confusion tables (in %) for velocity prediction, calculated on the test split of POP9094/4.
Each row represents the percentage of notes in an actual class while each column represents a
predicted class.

we encourage readers to evaluate the results by listening to the prediction outputs.20 We pro-
vide three versions of the melody MIDI file for each original song, generated respectively by the
skyline algorithm, Simonetta et al.’s CNN and “our model (performance) + CP”. Taking “Clayder-
man_Yesterday_Once_More.mid” as an example, the melody generated by the skyline algorithm
exhibits stiffness and lacks intricate details, retaining only the treble. The CNN version demonstrates
considerable improvement over the skyline algorithm. However, a noticeable intermittent quality
persists throughout the entire song, with some cohesive melodies omitted. Our model achieves
commendable performance, successfully extracting the majority of the main melody and presenting a
discernible melodic progression. It is worth highlighting the efficiency of our model, as it requires
less than one hour for fine-tuning under the same hardware conditions that necessitate a full day of
training for the CNN baseline on the POP909 training set.

7.2 Velocity

Tab. 2 shows that the accuracy on our 6-class velocity classification task is not high, reaching 52.11%
at best. This may be due to the fact that velocity is rather subjective, meaning that musicians can
perform the same music piece fairly differently. Moreover, we note that the data is highly imbalanced,
with the latter three classes (mf, f, ff) taking up nearly 90% of all labelled data. The confusion tables
presented in Fig. 5 show that Bi-LSTM tends to classify most of the notes into f, the most popular
class among the six. This is less the case for our model, but the prediction of p and pp, i.e., the two
with the lowest dynamics, remains challenging. For future work, data augmentation is a potential
solution to mitigate the impact of data imbalance.

7.3 Style

Tab. 2 shows that our model greatly outperforms Bi-LSTM-Attn (Z. Lin et al., 2017) and the CNN
baseline (S. Kim et al., 2020) by 10–20% regardless of the token representation taken, reaching
81.75% testing accuracy at best for this 8-class classification problem. In addition, we see a large
performance gap between REMI and CP in this task, the largest among the four tasks. Fig. 6 further
shows that, both the baseline and “our model (score)+CP” confuse artists in similar genres and that
our model performs fairly well in recognising Herbie Hancock and Ryuichi Sakamoto. In contrast, by
considering velocity and tempo information, “our model (performance)+CP” gains lots of precision
on classifying songs in pop and contemporary genres, boosting the classification accuracy from 67.46
(score) to 81.75 (performance).

20https://github.com/wazenmai/MIDI-BERT/tree/CP/melody_extraction/audio

14

https://github.com/wazenmai/MIDI-BERT/tree/CP/melody_extraction/audio


(a) Bi-LSTM + CP (b) Our model (score) + CP (c) Our model (performance) + CP 

Figure 6: Confusion tables (in %) for style classification on the test split of Pianist8. Each row shows
the percentage of sequences of a class predicted as another class. Notation—“C”: R. Clayderman
(pop), “Y”: Yiruma (pop), “H”: H. Hancock (jazz), “E”: L. Einaudi (contemporary), “J”: H. Joe
(contemporary), “S”: R. Sakamoto (contemporary), “M”: Bethel Music (religious) and “W”: Hillsong
Worship (religious).

(a) Bi-LSTM + CP (b) Our model (score) + CP (c) Our model (performance) + CP 

Figure 7: Confusion tables for emotion classification; in % of sequences on the test split of EMOPIA.
Each row represents the percentage of notes in an actual class while each column represents a
predicted class.

7.4 Emotion

Tab. 2 shows that our model outscores Bi-LSTM-Attn by around 14% and the CNN baseline (S. Kim
et al., 2020) by around 7% in both REMI and CP for this 4-class classification problem, reaching
70.64% testing accuracy at best. There is little performance difference between REMI and CP in this
task. Fig. 7 further shows that the evaluated models can fairly easily distinguish between high arousal
and low arousal pieces (i.e., “HAHV, HALV” versus “LALV, LAHV”), but they have a much harder
time along the valence axis (e.g., “HAHV” versus “HALV” and “LALV” versus “LAHV”). We see
less confusion from the result of “our model (score)+CP”. By considering velocity and tempo, “our
model (performance)+CP” can further classify variance difference in low-arousal songs, though
there is still room for improvement.

8 Conclusion

In this article, we presented a large-scale pre-trained model for musical data in the MIDI format.
We employed five public-domain piano MIDI datasets for BERT-like masking-based pre-training
and evaluated the pre-trained model on four challenging downstream symbolic music classification
tasks, most with less than 1K labelled MIDI pieces. Our experiments validate the effectiveness of
pre-training for both note-level and sequence-level classification tasks.
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This work can be extended in many ways. First, to employ other pre-training strategies or architectures
(Han et al., 2021). Second, to employ Transformer models with linear computational complexity
(Choromanski et al., 2021; Liutkus et al., 2021), so as to use the whole MIDI pieces (instead of
segments) at pre-training.21 Third, to include other time signatures and increase the amount of
non-pop piano scores. Fourth, to extend the corpus and the token representation from single-track
piano to multi-track MIDI, like the work done by Zeng et al. (2021). Finally, to consider more
downstream tasks such as symbolic-domain music segmentation (Hamanaka et al., 2014; Kranenburg,
2020), chord recognition (Harasim et al., 2020), score passage matching (Sutcliffe et al., 2019) and
beat tracking (Y.-C. Chuang & Su, 2020). We have released the code publicly, which may hopefully
help facilitate such endeavours.
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